Ultratrace CO/SF 6 Detection System Based on Differential Fourier Transform Infrared Spectroscopy Combined with the Weighted Sine Spectral Reconstruction Convolutional Neural Network (WSSR-CNN) Model

Carbon monoxide (CO), as an indicator gas for fault diagnosis of gas-insulated switchgear, has the strongest absorption coefficient in the mid-infrared region, making Fourier transform infrared (FTIR) spectroscopy an ideal method for its concentration detection. However, there is extremely abundant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2024-11, Vol.96 (45), p.18086-18095
Hauptverfasser: Gao, Jie, Zhang, Yucun, Zhu, Rui, Li, Mu, Xie, Fei, Wu, Yongqi, Wu, Xijun, Zhang, Yungang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18095
container_issue 45
container_start_page 18086
container_title Analytical chemistry (Washington)
container_volume 96
creator Gao, Jie
Zhang, Yucun
Zhu, Rui
Li, Mu
Xie, Fei
Wu, Yongqi
Wu, Xijun
Zhang, Yungang
description Carbon monoxide (CO), as an indicator gas for fault diagnosis of gas-insulated switchgear, has the strongest absorption coefficient in the mid-infrared region, making Fourier transform infrared (FTIR) spectroscopy an ideal method for its concentration detection. However, there is extremely abundant absorption of SF in this region, resulting in a great challenge for CO/SF detection. To address this challenge, we report a high sensitivity online detection system for ultratrace levels of CO, which combines differential Fourier transform infrared (DFTIR) spectroscopy with a weighted sine spectral reconstruction convolutional neural network (WSSR-CNN). The differential technique is first introduced into FTIR for baseline correction of CO absorption signals. The novel WSSR method achieves feature extraction and denoising of weak spectral signals in strong interference by discretizing interfering signals and enhancing target signals. On this basis, the detection of CO concentration is realized using the CNN model. Finally, WSSR-CNN is compared with four other methods. Results showed that WSSR-CNN outperforms all four models with evaluation index reaching 0.99982 and 0.99999 in the range of low concentration (0.096-0.986 ppm) and high concentration (1.984-52.193 ppm) and mean absolute percentage error of 0.97% and 0.22%, respectively. The lowest detection limit of the system at 1σ is 13 ppb, which is the best result reported so far for detecting CO/SF concentration based on FTIR.
doi_str_mv 10.1021/acs.analchem.4c03970
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_analchem_4c03970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39476406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c686-bbb5cbe396ed5f18860e1297206cbd93588e1f5ea8f997aaa2f00a2f2e2af1703</originalsourceid><addsrcrecordid>eNo9kdFu2yAUhlG1qU3TvkFVcbldOD3gGNuXm9NslbJUqlP10sL40HizTQR4VZ5wrzWypJMQ53D4_x-hj5AbBjMGnN1J5WZykJ3aYj-bK4jzFM7IhCUcIpFl_AOZAEAc8RTgglw69xOAMWDinFzE-TwVcxAT8ue581aGpZAWj3flkgq6QI_Kt2ag5d557OlX6bCh4bxotUaLg29lR5dmtC1aurFycNrYnj4M2kobpOUuBFjjlNntaWH6uh3C9K31W-q3SF-wfd36gy7MT-IQ-ITKDM7b8fh4YYbfphsPfbhc42j_Ff9m7C_66aUsn6Jivf5Mf5gGuyvyUcvO4fWpTslmeb8pvkerx28PxZdVpEQmorquE1VjnAtsEs2yTAAynqcchKqbPE6yDJlOUGY6z1MpJdcAYePIpWYpxFMyP8aq8DtnUVc72_bS7isG1QFLFbBU71iqE5Zguz3admPdY_Pf9M4h_gva9JDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultratrace CO/SF 6 Detection System Based on Differential Fourier Transform Infrared Spectroscopy Combined with the Weighted Sine Spectral Reconstruction Convolutional Neural Network (WSSR-CNN) Model</title><source>American Chemical Society Journals</source><creator>Gao, Jie ; Zhang, Yucun ; Zhu, Rui ; Li, Mu ; Xie, Fei ; Wu, Yongqi ; Wu, Xijun ; Zhang, Yungang</creator><creatorcontrib>Gao, Jie ; Zhang, Yucun ; Zhu, Rui ; Li, Mu ; Xie, Fei ; Wu, Yongqi ; Wu, Xijun ; Zhang, Yungang</creatorcontrib><description>Carbon monoxide (CO), as an indicator gas for fault diagnosis of gas-insulated switchgear, has the strongest absorption coefficient in the mid-infrared region, making Fourier transform infrared (FTIR) spectroscopy an ideal method for its concentration detection. However, there is extremely abundant absorption of SF in this region, resulting in a great challenge for CO/SF detection. To address this challenge, we report a high sensitivity online detection system for ultratrace levels of CO, which combines differential Fourier transform infrared (DFTIR) spectroscopy with a weighted sine spectral reconstruction convolutional neural network (WSSR-CNN). The differential technique is first introduced into FTIR for baseline correction of CO absorption signals. The novel WSSR method achieves feature extraction and denoising of weak spectral signals in strong interference by discretizing interfering signals and enhancing target signals. On this basis, the detection of CO concentration is realized using the CNN model. Finally, WSSR-CNN is compared with four other methods. Results showed that WSSR-CNN outperforms all four models with evaluation index reaching 0.99982 and 0.99999 in the range of low concentration (0.096-0.986 ppm) and high concentration (1.984-52.193 ppm) and mean absolute percentage error of 0.97% and 0.22%, respectively. The lowest detection limit of the system at 1σ is 13 ppb, which is the best result reported so far for detecting CO/SF concentration based on FTIR.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.4c03970</identifier><identifier>PMID: 39476406</identifier><language>eng</language><publisher>United States</publisher><ispartof>Analytical chemistry (Washington), 2024-11, Vol.96 (45), p.18086-18095</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c686-bbb5cbe396ed5f18860e1297206cbd93588e1f5ea8f997aaa2f00a2f2e2af1703</cites><orcidid>0000-0001-8467-5520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39476406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Zhang, Yucun</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Li, Mu</creatorcontrib><creatorcontrib>Xie, Fei</creatorcontrib><creatorcontrib>Wu, Yongqi</creatorcontrib><creatorcontrib>Wu, Xijun</creatorcontrib><creatorcontrib>Zhang, Yungang</creatorcontrib><title>Ultratrace CO/SF 6 Detection System Based on Differential Fourier Transform Infrared Spectroscopy Combined with the Weighted Sine Spectral Reconstruction Convolutional Neural Network (WSSR-CNN) Model</title><title>Analytical chemistry (Washington)</title><addtitle>Anal Chem</addtitle><description>Carbon monoxide (CO), as an indicator gas for fault diagnosis of gas-insulated switchgear, has the strongest absorption coefficient in the mid-infrared region, making Fourier transform infrared (FTIR) spectroscopy an ideal method for its concentration detection. However, there is extremely abundant absorption of SF in this region, resulting in a great challenge for CO/SF detection. To address this challenge, we report a high sensitivity online detection system for ultratrace levels of CO, which combines differential Fourier transform infrared (DFTIR) spectroscopy with a weighted sine spectral reconstruction convolutional neural network (WSSR-CNN). The differential technique is first introduced into FTIR for baseline correction of CO absorption signals. The novel WSSR method achieves feature extraction and denoising of weak spectral signals in strong interference by discretizing interfering signals and enhancing target signals. On this basis, the detection of CO concentration is realized using the CNN model. Finally, WSSR-CNN is compared with four other methods. Results showed that WSSR-CNN outperforms all four models with evaluation index reaching 0.99982 and 0.99999 in the range of low concentration (0.096-0.986 ppm) and high concentration (1.984-52.193 ppm) and mean absolute percentage error of 0.97% and 0.22%, respectively. The lowest detection limit of the system at 1σ is 13 ppb, which is the best result reported so far for detecting CO/SF concentration based on FTIR.</description><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kdFu2yAUhlG1qU3TvkFVcbldOD3gGNuXm9NslbJUqlP10sL40HizTQR4VZ5wrzWypJMQ53D4_x-hj5AbBjMGnN1J5WZykJ3aYj-bK4jzFM7IhCUcIpFl_AOZAEAc8RTgglw69xOAMWDinFzE-TwVcxAT8ue581aGpZAWj3flkgq6QI_Kt2ag5d557OlX6bCh4bxotUaLg29lR5dmtC1aurFycNrYnj4M2kobpOUuBFjjlNntaWH6uh3C9K31W-q3SF-wfd36gy7MT-IQ-ITKDM7b8fh4YYbfphsPfbhc42j_Ff9m7C_66aUsn6Jivf5Mf5gGuyvyUcvO4fWpTslmeb8pvkerx28PxZdVpEQmorquE1VjnAtsEs2yTAAynqcchKqbPE6yDJlOUGY6z1MpJdcAYePIpWYpxFMyP8aq8DtnUVc72_bS7isG1QFLFbBU71iqE5Zguz3admPdY_Pf9M4h_gva9JDM</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Gao, Jie</creator><creator>Zhang, Yucun</creator><creator>Zhu, Rui</creator><creator>Li, Mu</creator><creator>Xie, Fei</creator><creator>Wu, Yongqi</creator><creator>Wu, Xijun</creator><creator>Zhang, Yungang</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8467-5520</orcidid></search><sort><creationdate>20241112</creationdate><title>Ultratrace CO/SF 6 Detection System Based on Differential Fourier Transform Infrared Spectroscopy Combined with the Weighted Sine Spectral Reconstruction Convolutional Neural Network (WSSR-CNN) Model</title><author>Gao, Jie ; Zhang, Yucun ; Zhu, Rui ; Li, Mu ; Xie, Fei ; Wu, Yongqi ; Wu, Xijun ; Zhang, Yungang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c686-bbb5cbe396ed5f18860e1297206cbd93588e1f5ea8f997aaa2f00a2f2e2af1703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Zhang, Yucun</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Li, Mu</creatorcontrib><creatorcontrib>Xie, Fei</creatorcontrib><creatorcontrib>Wu, Yongqi</creatorcontrib><creatorcontrib>Wu, Xijun</creatorcontrib><creatorcontrib>Zhang, Yungang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jie</au><au>Zhang, Yucun</au><au>Zhu, Rui</au><au>Li, Mu</au><au>Xie, Fei</au><au>Wu, Yongqi</au><au>Wu, Xijun</au><au>Zhang, Yungang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultratrace CO/SF 6 Detection System Based on Differential Fourier Transform Infrared Spectroscopy Combined with the Weighted Sine Spectral Reconstruction Convolutional Neural Network (WSSR-CNN) Model</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal Chem</addtitle><date>2024-11-12</date><risdate>2024</risdate><volume>96</volume><issue>45</issue><spage>18086</spage><epage>18095</epage><pages>18086-18095</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Carbon monoxide (CO), as an indicator gas for fault diagnosis of gas-insulated switchgear, has the strongest absorption coefficient in the mid-infrared region, making Fourier transform infrared (FTIR) spectroscopy an ideal method for its concentration detection. However, there is extremely abundant absorption of SF in this region, resulting in a great challenge for CO/SF detection. To address this challenge, we report a high sensitivity online detection system for ultratrace levels of CO, which combines differential Fourier transform infrared (DFTIR) spectroscopy with a weighted sine spectral reconstruction convolutional neural network (WSSR-CNN). The differential technique is first introduced into FTIR for baseline correction of CO absorption signals. The novel WSSR method achieves feature extraction and denoising of weak spectral signals in strong interference by discretizing interfering signals and enhancing target signals. On this basis, the detection of CO concentration is realized using the CNN model. Finally, WSSR-CNN is compared with four other methods. Results showed that WSSR-CNN outperforms all four models with evaluation index reaching 0.99982 and 0.99999 in the range of low concentration (0.096-0.986 ppm) and high concentration (1.984-52.193 ppm) and mean absolute percentage error of 0.97% and 0.22%, respectively. The lowest detection limit of the system at 1σ is 13 ppb, which is the best result reported so far for detecting CO/SF concentration based on FTIR.</abstract><cop>United States</cop><pmid>39476406</pmid><doi>10.1021/acs.analchem.4c03970</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8467-5520</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2024-11, Vol.96 (45), p.18086-18095
issn 0003-2700
1520-6882
language eng
recordid cdi_crossref_primary_10_1021_acs_analchem_4c03970
source American Chemical Society Journals
title Ultratrace CO/SF 6 Detection System Based on Differential Fourier Transform Infrared Spectroscopy Combined with the Weighted Sine Spectral Reconstruction Convolutional Neural Network (WSSR-CNN) Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultratrace%20CO/SF%206%20Detection%20System%20Based%20on%20Differential%20Fourier%20Transform%20Infrared%20Spectroscopy%20Combined%20with%20the%20Weighted%20Sine%20Spectral%20Reconstruction%20Convolutional%20Neural%20Network%20(WSSR-CNN)%20Model&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Gao,%20Jie&rft.date=2024-11-12&rft.volume=96&rft.issue=45&rft.spage=18086&rft.epage=18095&rft.pages=18086-18095&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.4c03970&rft_dat=%3Cpubmed_cross%3E39476406%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39476406&rfr_iscdi=true