Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging

Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-09, Vol.92 (18), p.12538-12547
Hauptverfasser: Flint, Lucy E, Hamm, Gregory, Ready, Joseph D, Ling, Stephanie, Duckett, Catherine J, Cross, Neil A, Cole, Laura M, Smith, David P, Goodwin, Richard J. A, Clench, Malcolm R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12547
container_issue 18
container_start_page 12538
container_title Analytical chemistry (Washington)
container_volume 92
creator Flint, Lucy E
Hamm, Gregory
Ready, Joseph D
Ling, Stephanie
Duckett, Catherine J
Cross, Neil A
Cole, Laura M
Smith, David P
Goodwin, Richard J. A
Clench, Malcolm R
description Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (K i-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development.
doi_str_mv 10.1021/acs.analchem.0c02389
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_analchem_0c02389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447573219</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-b85f99135d100429c4c3d0f3cef699dcf4c3a0414357be44340a2a9e90492c1e3</originalsourceid><addsrcrecordid>eNp9kU-P0zAQxS0EYsvCN0DIEhcuKeM_aeIL0qrswkpbcWA5W1NnkmaVxMVOViqfHkftVsCBiy2Pf--Nx4-xtwKWAqT4iC4uccDO7ahfggOpSvOMLUQuIVuVpXzOFgCgMlkAXLBXMT4ACAFi9ZJdKFmUK23yBRvWOwzoRgrtLxxbP3Bfcxz4VdMEanCkit_vAlH2ue1piAnAjq-pS8vUjVMgvvEVdXx74JtUaHtfJWCDMfLve3Jj8D2N4cBve2zaoXnNXtTYRXpz2i_Zj5vr-_XX7O7bl9v11V2GuijGbFvmtTFC5ZUA0NI47VQFtXJUr4ypXJ3OCFpolRdb0lppQImGDGgjnSB1yT4dfffTtqfK0TAG7Ow-tD2Gg_XY2r9vhnZnG_9oC22KAnQy-HAyCP7nRHG0fRtdmhsH8lO0cu6ZK1PO6Pt_0Ac_hfRPM6WLvFBSmETpI-WCjzFQfX6MADsHalOg9ilQewo0yd79OchZ9JRgAuAIzPJz4_96_gYFc7FI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447573219</pqid></control><display><type>article</type><title>Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging</title><source>MEDLINE</source><source>ACS Publications</source><creator>Flint, Lucy E ; Hamm, Gregory ; Ready, Joseph D ; Ling, Stephanie ; Duckett, Catherine J ; Cross, Neil A ; Cole, Laura M ; Smith, David P ; Goodwin, Richard J. A ; Clench, Malcolm R</creator><creatorcontrib>Flint, Lucy E ; Hamm, Gregory ; Ready, Joseph D ; Ling, Stephanie ; Duckett, Catherine J ; Cross, Neil A ; Cole, Laura M ; Smith, David P ; Goodwin, Richard J. A ; Clench, Malcolm R</creatorcontrib><description>Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (K i-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c02389</identifier><identifier>PMID: 32786495</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenocarcinoma ; Adenocarcinoma of Lung - diagnosis ; Adenocarcinoma of Lung - metabolism ; Biological activity ; Cell culture ; Citric acid ; Citric Acid - analysis ; Citric Acid - metabolism ; Cytometry ; Drug development ; Environment models ; Glucose transporter ; Glutamine ; Glutamine - analysis ; Glutamine - metabolism ; Glycolysis ; Heterogeneity ; Humans ; Hypoxia ; Imaging ; Imaging techniques ; Inductively coupled plasma ; Ionization ; Lactic acid ; Lactic Acid - analysis ; Lactic Acid - metabolism ; Laser ablation ; Lung cancer ; Lung Neoplasms - diagnosis ; Lung Neoplasms - metabolism ; Magnesium ; Mass spectrometry ; Mass spectroscopy ; Medical research ; Metabolism ; Metabolites ; Multimodal Imaging ; Phenotyping ; Proteins ; Scientific imaging ; Spatial discrimination ; Spatial distribution ; Spatial resolution ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Spectroscopy ; Three dimensional models ; Tricarboxylic acid cycle ; Tumor Cells, Cultured ; Tumors</subject><ispartof>Analytical chemistry (Washington), 2020-09, Vol.92 (18), p.12538-12547</ispartof><rights>Copyright American Chemical Society Sep 15, 2020</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-b85f99135d100429c4c3d0f3cef699dcf4c3a0414357be44340a2a9e90492c1e3</citedby><cites>FETCH-LOGICAL-a477t-b85f99135d100429c4c3d0f3cef699dcf4c3a0414357be44340a2a9e90492c1e3</cites><orcidid>0000-0002-0798-831X ; 0000-0001-5177-8574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c02389$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c02389$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32786495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flint, Lucy E</creatorcontrib><creatorcontrib>Hamm, Gregory</creatorcontrib><creatorcontrib>Ready, Joseph D</creatorcontrib><creatorcontrib>Ling, Stephanie</creatorcontrib><creatorcontrib>Duckett, Catherine J</creatorcontrib><creatorcontrib>Cross, Neil A</creatorcontrib><creatorcontrib>Cole, Laura M</creatorcontrib><creatorcontrib>Smith, David P</creatorcontrib><creatorcontrib>Goodwin, Richard J. A</creatorcontrib><creatorcontrib>Clench, Malcolm R</creatorcontrib><title>Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (K i-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development.</description><subject>Adenocarcinoma</subject><subject>Adenocarcinoma of Lung - diagnosis</subject><subject>Adenocarcinoma of Lung - metabolism</subject><subject>Biological activity</subject><subject>Cell culture</subject><subject>Citric acid</subject><subject>Citric Acid - analysis</subject><subject>Citric Acid - metabolism</subject><subject>Cytometry</subject><subject>Drug development</subject><subject>Environment models</subject><subject>Glucose transporter</subject><subject>Glutamine</subject><subject>Glutamine - analysis</subject><subject>Glutamine - metabolism</subject><subject>Glycolysis</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Inductively coupled plasma</subject><subject>Ionization</subject><subject>Lactic acid</subject><subject>Lactic Acid - analysis</subject><subject>Lactic Acid - metabolism</subject><subject>Laser ablation</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - diagnosis</subject><subject>Lung Neoplasms - metabolism</subject><subject>Magnesium</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medical research</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Multimodal Imaging</subject><subject>Phenotyping</subject><subject>Proteins</subject><subject>Scientific imaging</subject><subject>Spatial discrimination</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Spectroscopy</subject><subject>Three dimensional models</subject><subject>Tricarboxylic acid cycle</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-P0zAQxS0EYsvCN0DIEhcuKeM_aeIL0qrswkpbcWA5W1NnkmaVxMVOViqfHkftVsCBiy2Pf--Nx4-xtwKWAqT4iC4uccDO7ahfggOpSvOMLUQuIVuVpXzOFgCgMlkAXLBXMT4ACAFi9ZJdKFmUK23yBRvWOwzoRgrtLxxbP3Bfcxz4VdMEanCkit_vAlH2ue1piAnAjq-pS8vUjVMgvvEVdXx74JtUaHtfJWCDMfLve3Jj8D2N4cBve2zaoXnNXtTYRXpz2i_Zj5vr-_XX7O7bl9v11V2GuijGbFvmtTFC5ZUA0NI47VQFtXJUr4ypXJ3OCFpolRdb0lppQImGDGgjnSB1yT4dfffTtqfK0TAG7Ow-tD2Gg_XY2r9vhnZnG_9oC22KAnQy-HAyCP7nRHG0fRtdmhsH8lO0cu6ZK1PO6Pt_0Ac_hfRPM6WLvFBSmETpI-WCjzFQfX6MADsHalOg9ilQewo0yd79OchZ9JRgAuAIzPJz4_96_gYFc7FI</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Flint, Lucy E</creator><creator>Hamm, Gregory</creator><creator>Ready, Joseph D</creator><creator>Ling, Stephanie</creator><creator>Duckett, Catherine J</creator><creator>Cross, Neil A</creator><creator>Cole, Laura M</creator><creator>Smith, David P</creator><creator>Goodwin, Richard J. A</creator><creator>Clench, Malcolm R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0798-831X</orcidid><orcidid>https://orcid.org/0000-0001-5177-8574</orcidid></search><sort><creationdate>20200915</creationdate><title>Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging</title><author>Flint, Lucy E ; Hamm, Gregory ; Ready, Joseph D ; Ling, Stephanie ; Duckett, Catherine J ; Cross, Neil A ; Cole, Laura M ; Smith, David P ; Goodwin, Richard J. A ; Clench, Malcolm R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-b85f99135d100429c4c3d0f3cef699dcf4c3a0414357be44340a2a9e90492c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenocarcinoma</topic><topic>Adenocarcinoma of Lung - diagnosis</topic><topic>Adenocarcinoma of Lung - metabolism</topic><topic>Biological activity</topic><topic>Cell culture</topic><topic>Citric acid</topic><topic>Citric Acid - analysis</topic><topic>Citric Acid - metabolism</topic><topic>Cytometry</topic><topic>Drug development</topic><topic>Environment models</topic><topic>Glucose transporter</topic><topic>Glutamine</topic><topic>Glutamine - analysis</topic><topic>Glutamine - metabolism</topic><topic>Glycolysis</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Inductively coupled plasma</topic><topic>Ionization</topic><topic>Lactic acid</topic><topic>Lactic Acid - analysis</topic><topic>Lactic Acid - metabolism</topic><topic>Laser ablation</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - diagnosis</topic><topic>Lung Neoplasms - metabolism</topic><topic>Magnesium</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medical research</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Multimodal Imaging</topic><topic>Phenotyping</topic><topic>Proteins</topic><topic>Scientific imaging</topic><topic>Spatial discrimination</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Spectroscopy</topic><topic>Three dimensional models</topic><topic>Tricarboxylic acid cycle</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flint, Lucy E</creatorcontrib><creatorcontrib>Hamm, Gregory</creatorcontrib><creatorcontrib>Ready, Joseph D</creatorcontrib><creatorcontrib>Ling, Stephanie</creatorcontrib><creatorcontrib>Duckett, Catherine J</creatorcontrib><creatorcontrib>Cross, Neil A</creatorcontrib><creatorcontrib>Cole, Laura M</creatorcontrib><creatorcontrib>Smith, David P</creatorcontrib><creatorcontrib>Goodwin, Richard J. A</creatorcontrib><creatorcontrib>Clench, Malcolm R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flint, Lucy E</au><au>Hamm, Gregory</au><au>Ready, Joseph D</au><au>Ling, Stephanie</au><au>Duckett, Catherine J</au><au>Cross, Neil A</au><au>Cole, Laura M</au><au>Smith, David P</au><au>Goodwin, Richard J. A</au><au>Clench, Malcolm R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-09-15</date><risdate>2020</risdate><volume>92</volume><issue>18</issue><spage>12538</spage><epage>12547</epage><pages>12538-12547</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (K i-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32786495</pmid><doi>10.1021/acs.analchem.0c02389</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0798-831X</orcidid><orcidid>https://orcid.org/0000-0001-5177-8574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-09, Vol.92 (18), p.12538-12547
issn 0003-2700
1520-6882
language eng
recordid cdi_crossref_primary_10_1021_acs_analchem_0c02389
source MEDLINE; ACS Publications
subjects Adenocarcinoma
Adenocarcinoma of Lung - diagnosis
Adenocarcinoma of Lung - metabolism
Biological activity
Cell culture
Citric acid
Citric Acid - analysis
Citric Acid - metabolism
Cytometry
Drug development
Environment models
Glucose transporter
Glutamine
Glutamine - analysis
Glutamine - metabolism
Glycolysis
Heterogeneity
Humans
Hypoxia
Imaging
Imaging techniques
Inductively coupled plasma
Ionization
Lactic acid
Lactic Acid - analysis
Lactic Acid - metabolism
Laser ablation
Lung cancer
Lung Neoplasms - diagnosis
Lung Neoplasms - metabolism
Magnesium
Mass spectrometry
Mass spectroscopy
Medical research
Metabolism
Metabolites
Multimodal Imaging
Phenotyping
Proteins
Scientific imaging
Spatial discrimination
Spatial distribution
Spatial resolution
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Spectroscopy
Three dimensional models
Tricarboxylic acid cycle
Tumor Cells, Cultured
Tumors
title Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20an%20Aggregated%20Three-Dimensional%20Cell%20Culture%20Model%20by%20Multimodal%20Mass%20Spectrometry%20Imaging&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Flint,%20Lucy%20E&rft.date=2020-09-15&rft.volume=92&rft.issue=18&rft.spage=12538&rft.epage=12547&rft.pages=12538-12547&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c02389&rft_dat=%3Cproquest_pubme%3E2447573219%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447573219&rft_id=info:pmid/32786495&rfr_iscdi=true