Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging
Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapid...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-09, Vol.92 (18), p.12538-12547 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12547 |
---|---|
container_issue | 18 |
container_start_page | 12538 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Flint, Lucy E Hamm, Gregory Ready, Joseph D Ling, Stephanie Duckett, Catherine J Cross, Neil A Cole, Laura M Smith, David P Goodwin, Richard J. A Clench, Malcolm R |
description | Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (K i-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development. |
doi_str_mv | 10.1021/acs.analchem.0c02389 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_analchem_0c02389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447573219</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-b85f99135d100429c4c3d0f3cef699dcf4c3a0414357be44340a2a9e90492c1e3</originalsourceid><addsrcrecordid>eNp9kU-P0zAQxS0EYsvCN0DIEhcuKeM_aeIL0qrswkpbcWA5W1NnkmaVxMVOViqfHkftVsCBiy2Pf--Nx4-xtwKWAqT4iC4uccDO7ahfggOpSvOMLUQuIVuVpXzOFgCgMlkAXLBXMT4ACAFi9ZJdKFmUK23yBRvWOwzoRgrtLxxbP3Bfcxz4VdMEanCkit_vAlH2ue1piAnAjq-pS8vUjVMgvvEVdXx74JtUaHtfJWCDMfLve3Jj8D2N4cBve2zaoXnNXtTYRXpz2i_Zj5vr-_XX7O7bl9v11V2GuijGbFvmtTFC5ZUA0NI47VQFtXJUr4ypXJ3OCFpolRdb0lppQImGDGgjnSB1yT4dfffTtqfK0TAG7Ow-tD2Gg_XY2r9vhnZnG_9oC22KAnQy-HAyCP7nRHG0fRtdmhsH8lO0cu6ZK1PO6Pt_0Ac_hfRPM6WLvFBSmETpI-WCjzFQfX6MADsHalOg9ilQewo0yd79OchZ9JRgAuAIzPJz4_96_gYFc7FI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447573219</pqid></control><display><type>article</type><title>Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging</title><source>MEDLINE</source><source>ACS Publications</source><creator>Flint, Lucy E ; Hamm, Gregory ; Ready, Joseph D ; Ling, Stephanie ; Duckett, Catherine J ; Cross, Neil A ; Cole, Laura M ; Smith, David P ; Goodwin, Richard J. A ; Clench, Malcolm R</creator><creatorcontrib>Flint, Lucy E ; Hamm, Gregory ; Ready, Joseph D ; Ling, Stephanie ; Duckett, Catherine J ; Cross, Neil A ; Cole, Laura M ; Smith, David P ; Goodwin, Richard J. A ; Clench, Malcolm R</creatorcontrib><description>Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (K i-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c02389</identifier><identifier>PMID: 32786495</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenocarcinoma ; Adenocarcinoma of Lung - diagnosis ; Adenocarcinoma of Lung - metabolism ; Biological activity ; Cell culture ; Citric acid ; Citric Acid - analysis ; Citric Acid - metabolism ; Cytometry ; Drug development ; Environment models ; Glucose transporter ; Glutamine ; Glutamine - analysis ; Glutamine - metabolism ; Glycolysis ; Heterogeneity ; Humans ; Hypoxia ; Imaging ; Imaging techniques ; Inductively coupled plasma ; Ionization ; Lactic acid ; Lactic Acid - analysis ; Lactic Acid - metabolism ; Laser ablation ; Lung cancer ; Lung Neoplasms - diagnosis ; Lung Neoplasms - metabolism ; Magnesium ; Mass spectrometry ; Mass spectroscopy ; Medical research ; Metabolism ; Metabolites ; Multimodal Imaging ; Phenotyping ; Proteins ; Scientific imaging ; Spatial discrimination ; Spatial distribution ; Spatial resolution ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Spectroscopy ; Three dimensional models ; Tricarboxylic acid cycle ; Tumor Cells, Cultured ; Tumors</subject><ispartof>Analytical chemistry (Washington), 2020-09, Vol.92 (18), p.12538-12547</ispartof><rights>Copyright American Chemical Society Sep 15, 2020</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-b85f99135d100429c4c3d0f3cef699dcf4c3a0414357be44340a2a9e90492c1e3</citedby><cites>FETCH-LOGICAL-a477t-b85f99135d100429c4c3d0f3cef699dcf4c3a0414357be44340a2a9e90492c1e3</cites><orcidid>0000-0002-0798-831X ; 0000-0001-5177-8574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c02389$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c02389$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32786495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flint, Lucy E</creatorcontrib><creatorcontrib>Hamm, Gregory</creatorcontrib><creatorcontrib>Ready, Joseph D</creatorcontrib><creatorcontrib>Ling, Stephanie</creatorcontrib><creatorcontrib>Duckett, Catherine J</creatorcontrib><creatorcontrib>Cross, Neil A</creatorcontrib><creatorcontrib>Cole, Laura M</creatorcontrib><creatorcontrib>Smith, David P</creatorcontrib><creatorcontrib>Goodwin, Richard J. A</creatorcontrib><creatorcontrib>Clench, Malcolm R</creatorcontrib><title>Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (K i-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development.</description><subject>Adenocarcinoma</subject><subject>Adenocarcinoma of Lung - diagnosis</subject><subject>Adenocarcinoma of Lung - metabolism</subject><subject>Biological activity</subject><subject>Cell culture</subject><subject>Citric acid</subject><subject>Citric Acid - analysis</subject><subject>Citric Acid - metabolism</subject><subject>Cytometry</subject><subject>Drug development</subject><subject>Environment models</subject><subject>Glucose transporter</subject><subject>Glutamine</subject><subject>Glutamine - analysis</subject><subject>Glutamine - metabolism</subject><subject>Glycolysis</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Inductively coupled plasma</subject><subject>Ionization</subject><subject>Lactic acid</subject><subject>Lactic Acid - analysis</subject><subject>Lactic Acid - metabolism</subject><subject>Laser ablation</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - diagnosis</subject><subject>Lung Neoplasms - metabolism</subject><subject>Magnesium</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medical research</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Multimodal Imaging</subject><subject>Phenotyping</subject><subject>Proteins</subject><subject>Scientific imaging</subject><subject>Spatial discrimination</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Spectroscopy</subject><subject>Three dimensional models</subject><subject>Tricarboxylic acid cycle</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-P0zAQxS0EYsvCN0DIEhcuKeM_aeIL0qrswkpbcWA5W1NnkmaVxMVOViqfHkftVsCBiy2Pf--Nx4-xtwKWAqT4iC4uccDO7ahfggOpSvOMLUQuIVuVpXzOFgCgMlkAXLBXMT4ACAFi9ZJdKFmUK23yBRvWOwzoRgrtLxxbP3Bfcxz4VdMEanCkit_vAlH2ue1piAnAjq-pS8vUjVMgvvEVdXx74JtUaHtfJWCDMfLve3Jj8D2N4cBve2zaoXnNXtTYRXpz2i_Zj5vr-_XX7O7bl9v11V2GuijGbFvmtTFC5ZUA0NI47VQFtXJUr4ypXJ3OCFpolRdb0lppQImGDGgjnSB1yT4dfffTtqfK0TAG7Ow-tD2Gg_XY2r9vhnZnG_9oC22KAnQy-HAyCP7nRHG0fRtdmhsH8lO0cu6ZK1PO6Pt_0Ac_hfRPM6WLvFBSmETpI-WCjzFQfX6MADsHalOg9ilQewo0yd79OchZ9JRgAuAIzPJz4_96_gYFc7FI</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Flint, Lucy E</creator><creator>Hamm, Gregory</creator><creator>Ready, Joseph D</creator><creator>Ling, Stephanie</creator><creator>Duckett, Catherine J</creator><creator>Cross, Neil A</creator><creator>Cole, Laura M</creator><creator>Smith, David P</creator><creator>Goodwin, Richard J. A</creator><creator>Clench, Malcolm R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0798-831X</orcidid><orcidid>https://orcid.org/0000-0001-5177-8574</orcidid></search><sort><creationdate>20200915</creationdate><title>Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging</title><author>Flint, Lucy E ; Hamm, Gregory ; Ready, Joseph D ; Ling, Stephanie ; Duckett, Catherine J ; Cross, Neil A ; Cole, Laura M ; Smith, David P ; Goodwin, Richard J. A ; Clench, Malcolm R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-b85f99135d100429c4c3d0f3cef699dcf4c3a0414357be44340a2a9e90492c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenocarcinoma</topic><topic>Adenocarcinoma of Lung - diagnosis</topic><topic>Adenocarcinoma of Lung - metabolism</topic><topic>Biological activity</topic><topic>Cell culture</topic><topic>Citric acid</topic><topic>Citric Acid - analysis</topic><topic>Citric Acid - metabolism</topic><topic>Cytometry</topic><topic>Drug development</topic><topic>Environment models</topic><topic>Glucose transporter</topic><topic>Glutamine</topic><topic>Glutamine - analysis</topic><topic>Glutamine - metabolism</topic><topic>Glycolysis</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Inductively coupled plasma</topic><topic>Ionization</topic><topic>Lactic acid</topic><topic>Lactic Acid - analysis</topic><topic>Lactic Acid - metabolism</topic><topic>Laser ablation</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - diagnosis</topic><topic>Lung Neoplasms - metabolism</topic><topic>Magnesium</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medical research</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Multimodal Imaging</topic><topic>Phenotyping</topic><topic>Proteins</topic><topic>Scientific imaging</topic><topic>Spatial discrimination</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Spectroscopy</topic><topic>Three dimensional models</topic><topic>Tricarboxylic acid cycle</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flint, Lucy E</creatorcontrib><creatorcontrib>Hamm, Gregory</creatorcontrib><creatorcontrib>Ready, Joseph D</creatorcontrib><creatorcontrib>Ling, Stephanie</creatorcontrib><creatorcontrib>Duckett, Catherine J</creatorcontrib><creatorcontrib>Cross, Neil A</creatorcontrib><creatorcontrib>Cole, Laura M</creatorcontrib><creatorcontrib>Smith, David P</creatorcontrib><creatorcontrib>Goodwin, Richard J. A</creatorcontrib><creatorcontrib>Clench, Malcolm R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flint, Lucy E</au><au>Hamm, Gregory</au><au>Ready, Joseph D</au><au>Ling, Stephanie</au><au>Duckett, Catherine J</au><au>Cross, Neil A</au><au>Cole, Laura M</au><au>Smith, David P</au><au>Goodwin, Richard J. A</au><au>Clench, Malcolm R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-09-15</date><risdate>2020</risdate><volume>92</volume><issue>18</issue><spage>12538</spage><epage>12547</epage><pages>12538-12547</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (K i-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32786495</pmid><doi>10.1021/acs.analchem.0c02389</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0798-831X</orcidid><orcidid>https://orcid.org/0000-0001-5177-8574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-09, Vol.92 (18), p.12538-12547 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_analchem_0c02389 |
source | MEDLINE; ACS Publications |
subjects | Adenocarcinoma Adenocarcinoma of Lung - diagnosis Adenocarcinoma of Lung - metabolism Biological activity Cell culture Citric acid Citric Acid - analysis Citric Acid - metabolism Cytometry Drug development Environment models Glucose transporter Glutamine Glutamine - analysis Glutamine - metabolism Glycolysis Heterogeneity Humans Hypoxia Imaging Imaging techniques Inductively coupled plasma Ionization Lactic acid Lactic Acid - analysis Lactic Acid - metabolism Laser ablation Lung cancer Lung Neoplasms - diagnosis Lung Neoplasms - metabolism Magnesium Mass spectrometry Mass spectroscopy Medical research Metabolism Metabolites Multimodal Imaging Phenotyping Proteins Scientific imaging Spatial discrimination Spatial distribution Spatial resolution Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Spectroscopy Three dimensional models Tricarboxylic acid cycle Tumor Cells, Cultured Tumors |
title | Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20an%20Aggregated%20Three-Dimensional%20Cell%20Culture%20Model%20by%20Multimodal%20Mass%20Spectrometry%20Imaging&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Flint,%20Lucy%20E&rft.date=2020-09-15&rft.volume=92&rft.issue=18&rft.spage=12538&rft.epage=12547&rft.pages=12538-12547&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c02389&rft_dat=%3Cproquest_pubme%3E2447573219%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447573219&rft_id=info:pmid/32786495&rfr_iscdi=true |