Duality pairs, phantom maps, and definability in triangulated categories

We define duality triples and duality pairs in compactly generated triangulated categories and investigate their properties. This enables us to give an elementary way to determine whether a class is closed under pure subobjects, pure quotients and pure extensions, as well as providing a way to show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2024-09, p.1-46
Hauptverfasser: Bird, Isaac, Williamson, Jordan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue
container_start_page 1
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume
creator Bird, Isaac
Williamson, Jordan
description We define duality triples and duality pairs in compactly generated triangulated categories and investigate their properties. This enables us to give an elementary way to determine whether a class is closed under pure subobjects, pure quotients and pure extensions, as well as providing a way to show the existence of approximations. One key ingredient is a new characterization of phantom maps. We then introduce an axiomatic form of Auslander–Gruson–Jensen duality, from which we define dual definable categories, and show that these coincide with symmetric coproduct closed duality pairs. This framework is ubiquitous, encompassing both algebraic triangulated categories and stable homotopy theories. Accordingly, we provide many applications in both settings, with a particular emphasis on silting theory and stratified tensor-triangulated categories.
doi_str_mv 10.1017/prm.2024.73
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_prm_2024_73</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_prm_2024_73</sourcerecordid><originalsourceid>FETCH-LOGICAL-c158t-c03af3ec217cee16181402adf4756f06bd0a4f41e0e9342d937c7c2a7f7229253</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EEqGw4ge8h4R7bSdOlqg8ilSJDayjWz-KUV6y00X_nhTYzOhIo1kcxm4RCgTUD1PsCwFCFVqesQyVlrlGoc5ZBhLqXCCUl-wqpW8AqOpSZ2zzdKAuzEc-UYjpnk9fNMxjz3uaFqLBcut8GGgXfldh4HMMNOwPHc3OcrPkfozBpWt24alL7ua_V-zz5fljvcm3769v68dtbrCs59yAJC-dEaiNc1hhjQoEWa90WXmodhZIeYUOXCOVsI3URhtB2mshGlHKFbv7-zVxTCk6304x9BSPLUJ7krBw354ktFrKH6hxUBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Duality pairs, phantom maps, and definability in triangulated categories</title><source>Cambridge Journals - CAUL Collection</source><creator>Bird, Isaac ; Williamson, Jordan</creator><creatorcontrib>Bird, Isaac ; Williamson, Jordan</creatorcontrib><description>We define duality triples and duality pairs in compactly generated triangulated categories and investigate their properties. This enables us to give an elementary way to determine whether a class is closed under pure subobjects, pure quotients and pure extensions, as well as providing a way to show the existence of approximations. One key ingredient is a new characterization of phantom maps. We then introduce an axiomatic form of Auslander–Gruson–Jensen duality, from which we define dual definable categories, and show that these coincide with symmetric coproduct closed duality pairs. This framework is ubiquitous, encompassing both algebraic triangulated categories and stable homotopy theories. Accordingly, we provide many applications in both settings, with a particular emphasis on silting theory and stratified tensor-triangulated categories.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/prm.2024.73</identifier><language>eng</language><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2024-09, p.1-46</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c158t-c03af3ec217cee16181402adf4756f06bd0a4f41e0e9342d937c7c2a7f7229253</cites><orcidid>0000-0003-2963-3314 ; 0000-0002-3850-3768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Bird, Isaac</creatorcontrib><creatorcontrib>Williamson, Jordan</creatorcontrib><title>Duality pairs, phantom maps, and definability in triangulated categories</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><description>We define duality triples and duality pairs in compactly generated triangulated categories and investigate their properties. This enables us to give an elementary way to determine whether a class is closed under pure subobjects, pure quotients and pure extensions, as well as providing a way to show the existence of approximations. One key ingredient is a new characterization of phantom maps. We then introduce an axiomatic form of Auslander–Gruson–Jensen duality, from which we define dual definable categories, and show that these coincide with symmetric coproduct closed duality pairs. This framework is ubiquitous, encompassing both algebraic triangulated categories and stable homotopy theories. Accordingly, we provide many applications in both settings, with a particular emphasis on silting theory and stratified tensor-triangulated categories.</description><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAURC0EEqGw4ge8h4R7bSdOlqg8ilSJDayjWz-KUV6y00X_nhTYzOhIo1kcxm4RCgTUD1PsCwFCFVqesQyVlrlGoc5ZBhLqXCCUl-wqpW8AqOpSZ2zzdKAuzEc-UYjpnk9fNMxjz3uaFqLBcut8GGgXfldh4HMMNOwPHc3OcrPkfozBpWt24alL7ua_V-zz5fljvcm3769v68dtbrCs59yAJC-dEaiNc1hhjQoEWa90WXmodhZIeYUOXCOVsI3URhtB2mshGlHKFbv7-zVxTCk6304x9BSPLUJ7krBw354ktFrKH6hxUBs</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Bird, Isaac</creator><creator>Williamson, Jordan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2963-3314</orcidid><orcidid>https://orcid.org/0000-0002-3850-3768</orcidid></search><sort><creationdate>20240913</creationdate><title>Duality pairs, phantom maps, and definability in triangulated categories</title><author>Bird, Isaac ; Williamson, Jordan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c158t-c03af3ec217cee16181402adf4756f06bd0a4f41e0e9342d937c7c2a7f7229253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bird, Isaac</creatorcontrib><creatorcontrib>Williamson, Jordan</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bird, Isaac</au><au>Williamson, Jordan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality pairs, phantom maps, and definability in triangulated categories</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><date>2024-09-13</date><risdate>2024</risdate><spage>1</spage><epage>46</epage><pages>1-46</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>We define duality triples and duality pairs in compactly generated triangulated categories and investigate their properties. This enables us to give an elementary way to determine whether a class is closed under pure subobjects, pure quotients and pure extensions, as well as providing a way to show the existence of approximations. One key ingredient is a new characterization of phantom maps. We then introduce an axiomatic form of Auslander–Gruson–Jensen duality, from which we define dual definable categories, and show that these coincide with symmetric coproduct closed duality pairs. This framework is ubiquitous, encompassing both algebraic triangulated categories and stable homotopy theories. Accordingly, we provide many applications in both settings, with a particular emphasis on silting theory and stratified tensor-triangulated categories.</abstract><doi>10.1017/prm.2024.73</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0003-2963-3314</orcidid><orcidid>https://orcid.org/0000-0002-3850-3768</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2024-09, p.1-46
issn 0308-2105
1473-7124
language eng
recordid cdi_crossref_primary_10_1017_prm_2024_73
source Cambridge Journals - CAUL Collection
title Duality pairs, phantom maps, and definability in triangulated categories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20pairs,%20phantom%20maps,%20and%20definability%20in%20triangulated%20categories&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Bird,%20Isaac&rft.date=2024-09-13&rft.spage=1&rft.epage=46&rft.pages=1-46&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/prm.2024.73&rft_dat=%3Ccrossref%3E10_1017_prm_2024_73%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true