Radial solutions of initial boundary value problems of nonlinear Schrödinger equations in ℝ n

The article studies an initial boundary valueproblem (ibvp) for the radial solutions of the nonlinear Schrödinger (NLS) equation in a radially symmetric region $\Omega\in \mathbb R^n$ with boundaries. All such regions can be classified into three types: a ball Ω 0 centred at origin, a region Ω 1 out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2024-11, p.1-55
Hauptverfasser: Sun, Shu-Ming, Yan, Fangchi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue
container_start_page 1
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume
creator Sun, Shu-Ming
Yan, Fangchi
description The article studies an initial boundary valueproblem (ibvp) for the radial solutions of the nonlinear Schrödinger (NLS) equation in a radially symmetric region $\Omega\in \mathbb R^n$ with boundaries. All such regions can be classified into three types: a ball Ω 0 centred at origin, a region Ω 1 outside a ball, and an n -dimensional annulus Ω 2 . To study the well-posedness of those ibvps, the function spaces for the boundary data must be specified in terms of the solutions in appropriate Sobolev spaces. It is shown that when $\Omega = \Omega_1$ , the ibvp for the NLS equation is locally well-posed in $ C( [0, T^*]; H^s(\Omega_1))$ if the initial data is in $H^s(\Omega_1)$ and boundary data is in $ H^{\frac{2s+1}{4}}(0, T)$ with $s \geq 0$ . This is the optimal regularity for the boundary data and cannot be improved. When $\Omega = \Omega_2$ , the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_2))$ if the initial data is in $ H^s(\Omega_2)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with $s \geq 0$ . In this case, the boundary data requires $1/4$ more derivative compared to the case when $\Omega = \Omega_1$ . When $\Omega = \Omega_0$ with n = 2 (the case with n > 2 can be discussed similarly), the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_0))$ if the initial data is in $ H^s(\Omega_0)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with s > 1 (or $s \gt n/2$ ). Due to the lack of Strichartz estimates for the corresponding boundary integral operator with $ 0 \leq s \leq 1$ , the local well-posedness can only be achieved for s > 1. It is noted that the well-posedness results on Ω 0 and Ω 2 are the first ones for the ibvp of NLS equations in bounded regions of higher dimension.
doi_str_mv 10.1017/prm.2024.120
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_prm_2024_120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_prm_2024_120</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1017_prm_2024_1203</originalsourceid><addsrcrecordid>eNqVj0FOwzAURK2KSg20Ow7wD9CEbycl3VdUrAt74zYOuHK-0-8Gqfteg2twAW7CSUgoF2A1mtFoRk-IW4mZRFnetdxkClWRSYUjkciizNNSquJKJJjjMlUSFxNxHeMeEe-XizIRLxtTOeMhBt8dXaAIoQZH7jiE29BRZfgE78Z3FloOW2-b3woF8o6sYXjavfHXZ-Xo1TLYQ2cuM47g-_wBNBXj2vhoZ396I-brh-fVY7rjECPbWrfsmv5ES9QDRe8bPVDoniL_Z_0H9SVSZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radial solutions of initial boundary value problems of nonlinear Schrödinger equations in ℝ n</title><source>Cambridge University Press Journals Complete</source><creator>Sun, Shu-Ming ; Yan, Fangchi</creator><creatorcontrib>Sun, Shu-Ming ; Yan, Fangchi</creatorcontrib><description>The article studies an initial boundary valueproblem (ibvp) for the radial solutions of the nonlinear Schrödinger (NLS) equation in a radially symmetric region $\Omega\in \mathbb R^n$ with boundaries. All such regions can be classified into three types: a ball Ω 0 centred at origin, a region Ω 1 outside a ball, and an n -dimensional annulus Ω 2 . To study the well-posedness of those ibvps, the function spaces for the boundary data must be specified in terms of the solutions in appropriate Sobolev spaces. It is shown that when $\Omega = \Omega_1$ , the ibvp for the NLS equation is locally well-posed in $ C( [0, T^*]; H^s(\Omega_1))$ if the initial data is in $H^s(\Omega_1)$ and boundary data is in $ H^{\frac{2s+1}{4}}(0, T)$ with $s \geq 0$ . This is the optimal regularity for the boundary data and cannot be improved. When $\Omega = \Omega_2$ , the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_2))$ if the initial data is in $ H^s(\Omega_2)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with $s \geq 0$ . In this case, the boundary data requires $1/4$ more derivative compared to the case when $\Omega = \Omega_1$ . When $\Omega = \Omega_0$ with n = 2 (the case with n &gt; 2 can be discussed similarly), the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_0))$ if the initial data is in $ H^s(\Omega_0)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with s &gt; 1 (or $s \gt n/2$ ). Due to the lack of Strichartz estimates for the corresponding boundary integral operator with $ 0 \leq s \leq 1$ , the local well-posedness can only be achieved for s &gt; 1. It is noted that the well-posedness results on Ω 0 and Ω 2 are the first ones for the ibvp of NLS equations in bounded regions of higher dimension.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/prm.2024.120</identifier><language>eng</language><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2024-11, p.1-55</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1017_prm_2024_1203</cites><orcidid>0000-0002-0818-4700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sun, Shu-Ming</creatorcontrib><creatorcontrib>Yan, Fangchi</creatorcontrib><title>Radial solutions of initial boundary value problems of nonlinear Schrödinger equations in ℝ n</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><description>The article studies an initial boundary valueproblem (ibvp) for the radial solutions of the nonlinear Schrödinger (NLS) equation in a radially symmetric region $\Omega\in \mathbb R^n$ with boundaries. All such regions can be classified into three types: a ball Ω 0 centred at origin, a region Ω 1 outside a ball, and an n -dimensional annulus Ω 2 . To study the well-posedness of those ibvps, the function spaces for the boundary data must be specified in terms of the solutions in appropriate Sobolev spaces. It is shown that when $\Omega = \Omega_1$ , the ibvp for the NLS equation is locally well-posed in $ C( [0, T^*]; H^s(\Omega_1))$ if the initial data is in $H^s(\Omega_1)$ and boundary data is in $ H^{\frac{2s+1}{4}}(0, T)$ with $s \geq 0$ . This is the optimal regularity for the boundary data and cannot be improved. When $\Omega = \Omega_2$ , the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_2))$ if the initial data is in $ H^s(\Omega_2)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with $s \geq 0$ . In this case, the boundary data requires $1/4$ more derivative compared to the case when $\Omega = \Omega_1$ . When $\Omega = \Omega_0$ with n = 2 (the case with n &gt; 2 can be discussed similarly), the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_0))$ if the initial data is in $ H^s(\Omega_0)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with s &gt; 1 (or $s \gt n/2$ ). Due to the lack of Strichartz estimates for the corresponding boundary integral operator with $ 0 \leq s \leq 1$ , the local well-posedness can only be achieved for s &gt; 1. It is noted that the well-posedness results on Ω 0 and Ω 2 are the first ones for the ibvp of NLS equations in bounded regions of higher dimension.</description><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj0FOwzAURK2KSg20Ow7wD9CEbycl3VdUrAt74zYOuHK-0-8Gqfteg2twAW7CSUgoF2A1mtFoRk-IW4mZRFnetdxkClWRSYUjkciizNNSquJKJJjjMlUSFxNxHeMeEe-XizIRLxtTOeMhBt8dXaAIoQZH7jiE29BRZfgE78Z3FloOW2-b3woF8o6sYXjavfHXZ-Xo1TLYQ2cuM47g-_wBNBXj2vhoZ396I-brh-fVY7rjECPbWrfsmv5ES9QDRe8bPVDoniL_Z_0H9SVSZQ</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Sun, Shu-Ming</creator><creator>Yan, Fangchi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0818-4700</orcidid></search><sort><creationdate>20241125</creationdate><title>Radial solutions of initial boundary value problems of nonlinear Schrödinger equations in ℝ n</title><author>Sun, Shu-Ming ; Yan, Fangchi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1017_prm_2024_1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shu-Ming</creatorcontrib><creatorcontrib>Yan, Fangchi</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shu-Ming</au><au>Yan, Fangchi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial solutions of initial boundary value problems of nonlinear Schrödinger equations in ℝ n</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><date>2024-11-25</date><risdate>2024</risdate><spage>1</spage><epage>55</epage><pages>1-55</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>The article studies an initial boundary valueproblem (ibvp) for the radial solutions of the nonlinear Schrödinger (NLS) equation in a radially symmetric region $\Omega\in \mathbb R^n$ with boundaries. All such regions can be classified into three types: a ball Ω 0 centred at origin, a region Ω 1 outside a ball, and an n -dimensional annulus Ω 2 . To study the well-posedness of those ibvps, the function spaces for the boundary data must be specified in terms of the solutions in appropriate Sobolev spaces. It is shown that when $\Omega = \Omega_1$ , the ibvp for the NLS equation is locally well-posed in $ C( [0, T^*]; H^s(\Omega_1))$ if the initial data is in $H^s(\Omega_1)$ and boundary data is in $ H^{\frac{2s+1}{4}}(0, T)$ with $s \geq 0$ . This is the optimal regularity for the boundary data and cannot be improved. When $\Omega = \Omega_2$ , the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_2))$ if the initial data is in $ H^s(\Omega_2)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with $s \geq 0$ . In this case, the boundary data requires $1/4$ more derivative compared to the case when $\Omega = \Omega_1$ . When $\Omega = \Omega_0$ with n = 2 (the case with n &gt; 2 can be discussed similarly), the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_0))$ if the initial data is in $ H^s(\Omega_0)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with s &gt; 1 (or $s \gt n/2$ ). Due to the lack of Strichartz estimates for the corresponding boundary integral operator with $ 0 \leq s \leq 1$ , the local well-posedness can only be achieved for s &gt; 1. It is noted that the well-posedness results on Ω 0 and Ω 2 are the first ones for the ibvp of NLS equations in bounded regions of higher dimension.</abstract><doi>10.1017/prm.2024.120</doi><orcidid>https://orcid.org/0000-0002-0818-4700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2024-11, p.1-55
issn 0308-2105
1473-7124
language eng
recordid cdi_crossref_primary_10_1017_prm_2024_120
source Cambridge University Press Journals Complete
title Radial solutions of initial boundary value problems of nonlinear Schrödinger equations in ℝ n
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20solutions%20of%20initial%20boundary%20value%20problems%20of%20nonlinear%20Schr%C3%B6dinger%20equations%20in%20%E2%84%9D%20n&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Sun,%20Shu-Ming&rft.date=2024-11-25&rft.spage=1&rft.epage=55&rft.pages=1-55&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/prm.2024.120&rft_dat=%3Ccrossref%3E10_1017_prm_2024_120%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true