Inference in Linear Dyadic Data Models with Network Spillovers

When using dyadic data (i.e., data indexed by pairs of units), researchers typically assume a linear model, estimate it using Ordinary Least Squares, and conduct inference using “dyadic-robust” variance estimators. The latter assumes that dyads are uncorrelated if they do not share a common unit (e....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Political analysis 2024-07, Vol.32 (3), p.311-328
Hauptverfasser: Canen, Nathan, Sugiura, Ko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 3
container_start_page 311
container_title Political analysis
container_volume 32
creator Canen, Nathan
Sugiura, Ko
description When using dyadic data (i.e., data indexed by pairs of units), researchers typically assume a linear model, estimate it using Ordinary Least Squares, and conduct inference using “dyadic-robust” variance estimators. The latter assumes that dyads are uncorrelated if they do not share a common unit (e.g., if the same individual is not present in both pairs of data). We show that this assumption does not hold in many empirical applications because indirect links may exist due to network connections, generating correlated outcomes. Hence, “dyadic-robust” estimators can be biased in such situations. We develop a consistent variance estimator for such contexts by leveraging results in network statistics. Our estimator has good finite-sample properties in simulations, while allowing for decay in spillover effects. We illustrate our message with an application to politicians’ voting behavior when they are seating neighbors in the European Parliament.
doi_str_mv 10.1017/pan.2023.40
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_pan_2023_40</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_pan_2023_40</sourcerecordid><originalsourceid>FETCH-LOGICAL-c158t-f930171f42f253df883563886c52cca11fbb8d59e5d4377fba8b6d2d3c85bc933</originalsourceid><addsrcrecordid>eNotj8tKxDAARYMoOI6u_IHsJTXPJtkIMuNjoDMu1HVI88BobUtSHObv7aCrexeXczkAXBNcEUzk7Wj7imLKKo5PwIJwWSOulT6dO-YSEa3kObgo5RPPa6n1Atxt-hhy6F2AqYdN6oPNcH2wPjm4tpOF28GHrsB9mj7gLkz7IX_B1zF13fATcrkEZ9F2JVz95xK8Pz68rZ5R8_K0Wd03yBGhJhQ1mw9J5DRSwXxUiomaKVU7QZ2zhMS2VV7oIDxnUsbWqrb21DOnROs0Y0tw88d1eSglh2jGnL5tPhiCzVHdzOrmqG44Zr-YjkwH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inference in Linear Dyadic Data Models with Network Spillovers</title><source>Cambridge Journals</source><creator>Canen, Nathan ; Sugiura, Ko</creator><creatorcontrib>Canen, Nathan ; Sugiura, Ko</creatorcontrib><description>When using dyadic data (i.e., data indexed by pairs of units), researchers typically assume a linear model, estimate it using Ordinary Least Squares, and conduct inference using “dyadic-robust” variance estimators. The latter assumes that dyads are uncorrelated if they do not share a common unit (e.g., if the same individual is not present in both pairs of data). We show that this assumption does not hold in many empirical applications because indirect links may exist due to network connections, generating correlated outcomes. Hence, “dyadic-robust” estimators can be biased in such situations. We develop a consistent variance estimator for such contexts by leveraging results in network statistics. Our estimator has good finite-sample properties in simulations, while allowing for decay in spillover effects. We illustrate our message with an application to politicians’ voting behavior when they are seating neighbors in the European Parliament.</description><identifier>ISSN: 1047-1987</identifier><identifier>EISSN: 1476-4989</identifier><identifier>DOI: 10.1017/pan.2023.40</identifier><language>eng</language><ispartof>Political analysis, 2024-07, Vol.32 (3), p.311-328</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c158t-f930171f42f253df883563886c52cca11fbb8d59e5d4377fba8b6d2d3c85bc933</cites><orcidid>0000-0002-6444-145X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Canen, Nathan</creatorcontrib><creatorcontrib>Sugiura, Ko</creatorcontrib><title>Inference in Linear Dyadic Data Models with Network Spillovers</title><title>Political analysis</title><description>When using dyadic data (i.e., data indexed by pairs of units), researchers typically assume a linear model, estimate it using Ordinary Least Squares, and conduct inference using “dyadic-robust” variance estimators. The latter assumes that dyads are uncorrelated if they do not share a common unit (e.g., if the same individual is not present in both pairs of data). We show that this assumption does not hold in many empirical applications because indirect links may exist due to network connections, generating correlated outcomes. Hence, “dyadic-robust” estimators can be biased in such situations. We develop a consistent variance estimator for such contexts by leveraging results in network statistics. Our estimator has good finite-sample properties in simulations, while allowing for decay in spillover effects. We illustrate our message with an application to politicians’ voting behavior when they are seating neighbors in the European Parliament.</description><issn>1047-1987</issn><issn>1476-4989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotj8tKxDAARYMoOI6u_IHsJTXPJtkIMuNjoDMu1HVI88BobUtSHObv7aCrexeXczkAXBNcEUzk7Wj7imLKKo5PwIJwWSOulT6dO-YSEa3kObgo5RPPa6n1Atxt-hhy6F2AqYdN6oPNcH2wPjm4tpOF28GHrsB9mj7gLkz7IX_B1zF13fATcrkEZ9F2JVz95xK8Pz68rZ5R8_K0Wd03yBGhJhQ1mw9J5DRSwXxUiomaKVU7QZ2zhMS2VV7oIDxnUsbWqrb21DOnROs0Y0tw88d1eSglh2jGnL5tPhiCzVHdzOrmqG44Zr-YjkwH</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Canen, Nathan</creator><creator>Sugiura, Ko</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6444-145X</orcidid></search><sort><creationdate>202407</creationdate><title>Inference in Linear Dyadic Data Models with Network Spillovers</title><author>Canen, Nathan ; Sugiura, Ko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c158t-f930171f42f253df883563886c52cca11fbb8d59e5d4377fba8b6d2d3c85bc933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Canen, Nathan</creatorcontrib><creatorcontrib>Sugiura, Ko</creatorcontrib><collection>CrossRef</collection><jtitle>Political analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Canen, Nathan</au><au>Sugiura, Ko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference in Linear Dyadic Data Models with Network Spillovers</atitle><jtitle>Political analysis</jtitle><date>2024-07</date><risdate>2024</risdate><volume>32</volume><issue>3</issue><spage>311</spage><epage>328</epage><pages>311-328</pages><issn>1047-1987</issn><eissn>1476-4989</eissn><abstract>When using dyadic data (i.e., data indexed by pairs of units), researchers typically assume a linear model, estimate it using Ordinary Least Squares, and conduct inference using “dyadic-robust” variance estimators. The latter assumes that dyads are uncorrelated if they do not share a common unit (e.g., if the same individual is not present in both pairs of data). We show that this assumption does not hold in many empirical applications because indirect links may exist due to network connections, generating correlated outcomes. Hence, “dyadic-robust” estimators can be biased in such situations. We develop a consistent variance estimator for such contexts by leveraging results in network statistics. Our estimator has good finite-sample properties in simulations, while allowing for decay in spillover effects. We illustrate our message with an application to politicians’ voting behavior when they are seating neighbors in the European Parliament.</abstract><doi>10.1017/pan.2023.40</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6444-145X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1047-1987
ispartof Political analysis, 2024-07, Vol.32 (3), p.311-328
issn 1047-1987
1476-4989
language eng
recordid cdi_crossref_primary_10_1017_pan_2023_40
source Cambridge Journals
title Inference in Linear Dyadic Data Models with Network Spillovers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20in%20Linear%20Dyadic%20Data%20Models%20with%20Network%20Spillovers&rft.jtitle=Political%20analysis&rft.au=Canen,%20Nathan&rft.date=2024-07&rft.volume=32&rft.issue=3&rft.spage=311&rft.epage=328&rft.pages=311-328&rft.issn=1047-1987&rft.eissn=1476-4989&rft_id=info:doi/10.1017/pan.2023.40&rft_dat=%3Ccrossref%3E10_1017_pan_2023_40%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true