Maximal cliques in scale-free random graphs
We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-...
Gespeichert in:
Veröffentlicht in: | Network science (Cambridge University Press) 2024-12, Vol.12 (4), p.366-391 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 391 |
---|---|
container_issue | 4 |
container_start_page | 366 |
container_title | Network science (Cambridge University Press) |
container_volume | 12 |
creator | Bläsius, Thomas Katzmann, Maximillian Stegehuis, Clara |
description | We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-dense Erdős–Rényi graphs, we give linear and polynomial upper bounds on the number of maximal cliques. For the dense regime, we give super-polynomial and even exponential lower bounds. Although (G)IRGs are sparse, we give super-polynomial lower bounds for these models. This comes from the fact that these graphs have a power-law degree distribution, which leads to a dense subgraph in which we find many maximal cliques. These lower bounds seem to contradict previous empirical evidence that (G)IRGs have only few maximal cliques. We resolve this contradiction by providing experiments indicating that, even for large networks, the linear lower-order terms dominate, before the super-polynomial asymptotic behavior kicks in only for networks of extreme size. |
doi_str_mv | 10.1017/nws.2024.13 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_nws_2024_13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_nws_2024_13</sourcerecordid><originalsourceid>FETCH-LOGICAL-c121t-4abb7f73a174f179b4f8491b79518d7971f13398fde4b1f77027f42c157ff93d3</originalsourceid><addsrcrecordid>eNo9j01LAzEURYMoWGpX_oHZl4zvJRnfZCnFj0LFja5DksnTkem0Jor6752iuLoXLhzuEeIcoUZAuhg_S61AmRr1kZgpaECiauD4vxt1KhalvAIATou91DOxvPdf_dYPVRz6t49Uqn6sSvRDkpxTqrIfu922es5-_1LOxAn7oaTFX87F08314-pObh5u16urjYyo8F0aHwIxaY9kGMkGw62xGMg22HZkCRm1ti13yQRkIlDERkVsiNnqTs_F8pcb866UnNjt8_QxfzsEd1B1k6o7qLoJ9APL-0VE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximal cliques in scale-free random graphs</title><source>Alma/SFX Local Collection</source><creator>Bläsius, Thomas ; Katzmann, Maximillian ; Stegehuis, Clara</creator><creatorcontrib>Bläsius, Thomas ; Katzmann, Maximillian ; Stegehuis, Clara</creatorcontrib><description>We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-dense Erdős–Rényi graphs, we give linear and polynomial upper bounds on the number of maximal cliques. For the dense regime, we give super-polynomial and even exponential lower bounds. Although (G)IRGs are sparse, we give super-polynomial lower bounds for these models. This comes from the fact that these graphs have a power-law degree distribution, which leads to a dense subgraph in which we find many maximal cliques. These lower bounds seem to contradict previous empirical evidence that (G)IRGs have only few maximal cliques. We resolve this contradiction by providing experiments indicating that, even for large networks, the linear lower-order terms dominate, before the super-polynomial asymptotic behavior kicks in only for networks of extreme size.</description><identifier>ISSN: 2050-1242</identifier><identifier>EISSN: 2050-1250</identifier><identifier>DOI: 10.1017/nws.2024.13</identifier><language>eng</language><ispartof>Network science (Cambridge University Press), 2024-12, Vol.12 (4), p.366-391</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c121t-4abb7f73a174f179b4f8491b79518d7971f13398fde4b1f77027f42c157ff93d3</cites><orcidid>0000-0002-9302-5527 ; 0000-0003-3951-5653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bläsius, Thomas</creatorcontrib><creatorcontrib>Katzmann, Maximillian</creatorcontrib><creatorcontrib>Stegehuis, Clara</creatorcontrib><title>Maximal cliques in scale-free random graphs</title><title>Network science (Cambridge University Press)</title><description>We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-dense Erdős–Rényi graphs, we give linear and polynomial upper bounds on the number of maximal cliques. For the dense regime, we give super-polynomial and even exponential lower bounds. Although (G)IRGs are sparse, we give super-polynomial lower bounds for these models. This comes from the fact that these graphs have a power-law degree distribution, which leads to a dense subgraph in which we find many maximal cliques. These lower bounds seem to contradict previous empirical evidence that (G)IRGs have only few maximal cliques. We resolve this contradiction by providing experiments indicating that, even for large networks, the linear lower-order terms dominate, before the super-polynomial asymptotic behavior kicks in only for networks of extreme size.</description><issn>2050-1242</issn><issn>2050-1250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEURYMoWGpX_oHZl4zvJRnfZCnFj0LFja5DksnTkem0Jor6752iuLoXLhzuEeIcoUZAuhg_S61AmRr1kZgpaECiauD4vxt1KhalvAIATou91DOxvPdf_dYPVRz6t49Uqn6sSvRDkpxTqrIfu922es5-_1LOxAn7oaTFX87F08314-pObh5u16urjYyo8F0aHwIxaY9kGMkGw62xGMg22HZkCRm1ti13yQRkIlDERkVsiNnqTs_F8pcb866UnNjt8_QxfzsEd1B1k6o7qLoJ9APL-0VE</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Bläsius, Thomas</creator><creator>Katzmann, Maximillian</creator><creator>Stegehuis, Clara</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9302-5527</orcidid><orcidid>https://orcid.org/0000-0003-3951-5653</orcidid></search><sort><creationdate>202412</creationdate><title>Maximal cliques in scale-free random graphs</title><author>Bläsius, Thomas ; Katzmann, Maximillian ; Stegehuis, Clara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c121t-4abb7f73a174f179b4f8491b79518d7971f13398fde4b1f77027f42c157ff93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bläsius, Thomas</creatorcontrib><creatorcontrib>Katzmann, Maximillian</creatorcontrib><creatorcontrib>Stegehuis, Clara</creatorcontrib><collection>CrossRef</collection><jtitle>Network science (Cambridge University Press)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bläsius, Thomas</au><au>Katzmann, Maximillian</au><au>Stegehuis, Clara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal cliques in scale-free random graphs</atitle><jtitle>Network science (Cambridge University Press)</jtitle><date>2024-12</date><risdate>2024</risdate><volume>12</volume><issue>4</issue><spage>366</spage><epage>391</epage><pages>366-391</pages><issn>2050-1242</issn><eissn>2050-1250</eissn><abstract>We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-dense Erdős–Rényi graphs, we give linear and polynomial upper bounds on the number of maximal cliques. For the dense regime, we give super-polynomial and even exponential lower bounds. Although (G)IRGs are sparse, we give super-polynomial lower bounds for these models. This comes from the fact that these graphs have a power-law degree distribution, which leads to a dense subgraph in which we find many maximal cliques. These lower bounds seem to contradict previous empirical evidence that (G)IRGs have only few maximal cliques. We resolve this contradiction by providing experiments indicating that, even for large networks, the linear lower-order terms dominate, before the super-polynomial asymptotic behavior kicks in only for networks of extreme size.</abstract><doi>10.1017/nws.2024.13</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-9302-5527</orcidid><orcidid>https://orcid.org/0000-0003-3951-5653</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-1242 |
ispartof | Network science (Cambridge University Press), 2024-12, Vol.12 (4), p.366-391 |
issn | 2050-1242 2050-1250 |
language | eng |
recordid | cdi_crossref_primary_10_1017_nws_2024_13 |
source | Alma/SFX Local Collection |
title | Maximal cliques in scale-free random graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20cliques%20in%20scale-free%20random%20graphs&rft.jtitle=Network%20science%20(Cambridge%20University%20Press)&rft.au=Bl%C3%A4sius,%20Thomas&rft.date=2024-12&rft.volume=12&rft.issue=4&rft.spage=366&rft.epage=391&rft.pages=366-391&rft.issn=2050-1242&rft.eissn=2050-1250&rft_id=info:doi/10.1017/nws.2024.13&rft_dat=%3Ccrossref%3E10_1017_nws_2024_13%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |