Maximal cliques in scale-free random graphs

We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Network science (Cambridge University Press) 2024-12, Vol.12 (4), p.366-391
Hauptverfasser: Bläsius, Thomas, Katzmann, Maximillian, Stegehuis, Clara
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 4
container_start_page 366
container_title Network science (Cambridge University Press)
container_volume 12
creator Bläsius, Thomas
Katzmann, Maximillian
Stegehuis, Clara
description We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-dense Erdős–Rényi graphs, we give linear and polynomial upper bounds on the number of maximal cliques. For the dense regime, we give super-polynomial and even exponential lower bounds. Although (G)IRGs are sparse, we give super-polynomial lower bounds for these models. This comes from the fact that these graphs have a power-law degree distribution, which leads to a dense subgraph in which we find many maximal cliques. These lower bounds seem to contradict previous empirical evidence that (G)IRGs have only few maximal cliques. We resolve this contradiction by providing experiments indicating that, even for large networks, the linear lower-order terms dominate, before the super-polynomial asymptotic behavior kicks in only for networks of extreme size.
doi_str_mv 10.1017/nws.2024.13
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_nws_2024_13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_nws_2024_13</sourcerecordid><originalsourceid>FETCH-LOGICAL-c121t-4abb7f73a174f179b4f8491b79518d7971f13398fde4b1f77027f42c157ff93d3</originalsourceid><addsrcrecordid>eNo9j01LAzEURYMoWGpX_oHZl4zvJRnfZCnFj0LFja5DksnTkem0Jor6752iuLoXLhzuEeIcoUZAuhg_S61AmRr1kZgpaECiauD4vxt1KhalvAIATou91DOxvPdf_dYPVRz6t49Uqn6sSvRDkpxTqrIfu922es5-_1LOxAn7oaTFX87F08314-pObh5u16urjYyo8F0aHwIxaY9kGMkGw62xGMg22HZkCRm1ti13yQRkIlDERkVsiNnqTs_F8pcb866UnNjt8_QxfzsEd1B1k6o7qLoJ9APL-0VE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximal cliques in scale-free random graphs</title><source>Alma/SFX Local Collection</source><creator>Bläsius, Thomas ; Katzmann, Maximillian ; Stegehuis, Clara</creator><creatorcontrib>Bläsius, Thomas ; Katzmann, Maximillian ; Stegehuis, Clara</creatorcontrib><description>We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-dense Erdős–Rényi graphs, we give linear and polynomial upper bounds on the number of maximal cliques. For the dense regime, we give super-polynomial and even exponential lower bounds. Although (G)IRGs are sparse, we give super-polynomial lower bounds for these models. This comes from the fact that these graphs have a power-law degree distribution, which leads to a dense subgraph in which we find many maximal cliques. These lower bounds seem to contradict previous empirical evidence that (G)IRGs have only few maximal cliques. We resolve this contradiction by providing experiments indicating that, even for large networks, the linear lower-order terms dominate, before the super-polynomial asymptotic behavior kicks in only for networks of extreme size.</description><identifier>ISSN: 2050-1242</identifier><identifier>EISSN: 2050-1250</identifier><identifier>DOI: 10.1017/nws.2024.13</identifier><language>eng</language><ispartof>Network science (Cambridge University Press), 2024-12, Vol.12 (4), p.366-391</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c121t-4abb7f73a174f179b4f8491b79518d7971f13398fde4b1f77027f42c157ff93d3</cites><orcidid>0000-0002-9302-5527 ; 0000-0003-3951-5653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bläsius, Thomas</creatorcontrib><creatorcontrib>Katzmann, Maximillian</creatorcontrib><creatorcontrib>Stegehuis, Clara</creatorcontrib><title>Maximal cliques in scale-free random graphs</title><title>Network science (Cambridge University Press)</title><description>We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-dense Erdős–Rényi graphs, we give linear and polynomial upper bounds on the number of maximal cliques. For the dense regime, we give super-polynomial and even exponential lower bounds. Although (G)IRGs are sparse, we give super-polynomial lower bounds for these models. This comes from the fact that these graphs have a power-law degree distribution, which leads to a dense subgraph in which we find many maximal cliques. These lower bounds seem to contradict previous empirical evidence that (G)IRGs have only few maximal cliques. We resolve this contradiction by providing experiments indicating that, even for large networks, the linear lower-order terms dominate, before the super-polynomial asymptotic behavior kicks in only for networks of extreme size.</description><issn>2050-1242</issn><issn>2050-1250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j01LAzEURYMoWGpX_oHZl4zvJRnfZCnFj0LFja5DksnTkem0Jor6752iuLoXLhzuEeIcoUZAuhg_S61AmRr1kZgpaECiauD4vxt1KhalvAIATou91DOxvPdf_dYPVRz6t49Uqn6sSvRDkpxTqrIfu922es5-_1LOxAn7oaTFX87F08314-pObh5u16urjYyo8F0aHwIxaY9kGMkGw62xGMg22HZkCRm1ti13yQRkIlDERkVsiNnqTs_F8pcb866UnNjt8_QxfzsEd1B1k6o7qLoJ9APL-0VE</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Bläsius, Thomas</creator><creator>Katzmann, Maximillian</creator><creator>Stegehuis, Clara</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9302-5527</orcidid><orcidid>https://orcid.org/0000-0003-3951-5653</orcidid></search><sort><creationdate>202412</creationdate><title>Maximal cliques in scale-free random graphs</title><author>Bläsius, Thomas ; Katzmann, Maximillian ; Stegehuis, Clara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c121t-4abb7f73a174f179b4f8491b79518d7971f13398fde4b1f77027f42c157ff93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bläsius, Thomas</creatorcontrib><creatorcontrib>Katzmann, Maximillian</creatorcontrib><creatorcontrib>Stegehuis, Clara</creatorcontrib><collection>CrossRef</collection><jtitle>Network science (Cambridge University Press)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bläsius, Thomas</au><au>Katzmann, Maximillian</au><au>Stegehuis, Clara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximal cliques in scale-free random graphs</atitle><jtitle>Network science (Cambridge University Press)</jtitle><date>2024-12</date><risdate>2024</risdate><volume>12</volume><issue>4</issue><spage>366</spage><epage>391</epage><pages>366-391</pages><issn>2050-1242</issn><eissn>2050-1250</eissn><abstract>We investigate the number of maximal cliques, that is, cliques that are not contained in any larger clique, in three network models: Erdős–Rényi random graphs, inhomogeneous random graphs (IRGs) (also called Chung–Lu graphs), and geometric inhomogeneous random graphs (GIRGs). For sparse and not-too-dense Erdős–Rényi graphs, we give linear and polynomial upper bounds on the number of maximal cliques. For the dense regime, we give super-polynomial and even exponential lower bounds. Although (G)IRGs are sparse, we give super-polynomial lower bounds for these models. This comes from the fact that these graphs have a power-law degree distribution, which leads to a dense subgraph in which we find many maximal cliques. These lower bounds seem to contradict previous empirical evidence that (G)IRGs have only few maximal cliques. We resolve this contradiction by providing experiments indicating that, even for large networks, the linear lower-order terms dominate, before the super-polynomial asymptotic behavior kicks in only for networks of extreme size.</abstract><doi>10.1017/nws.2024.13</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-9302-5527</orcidid><orcidid>https://orcid.org/0000-0003-3951-5653</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-1242
ispartof Network science (Cambridge University Press), 2024-12, Vol.12 (4), p.366-391
issn 2050-1242
2050-1250
language eng
recordid cdi_crossref_primary_10_1017_nws_2024_13
source Alma/SFX Local Collection
title Maximal cliques in scale-free random graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximal%20cliques%20in%20scale-free%20random%20graphs&rft.jtitle=Network%20science%20(Cambridge%20University%20Press)&rft.au=Bl%C3%A4sius,%20Thomas&rft.date=2024-12&rft.volume=12&rft.issue=4&rft.spage=366&rft.epage=391&rft.pages=366-391&rft.issn=2050-1242&rft.eissn=2050-1250&rft_id=info:doi/10.1017/nws.2024.13&rft_dat=%3Ccrossref%3E10_1017_nws_2024_13%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true