Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics

This contribution proposes an interpretation of Thomas Aquinas’s philosophy of mathematics. It is argued that Aquinas’s philosophy of mathematics is a coherent view whose main features enable us to understand it as a moderate realism according to which mathematical objects have an esse intentionale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New Blackfriars 2024-09, Vol.105 (5), p.506-529
1. Verfasser: Usma Gómez, Daniel Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue 5
container_start_page 506
container_title New Blackfriars
container_volume 105
creator Usma Gómez, Daniel Eduardo
description This contribution proposes an interpretation of Thomas Aquinas’s philosophy of mathematics. It is argued that Aquinas’s philosophy of mathematics is a coherent view whose main features enable us to understand it as a moderate realism according to which mathematical objects have an esse intentionale . This esse intentionale involves both mathematicians’ intellectual activity and natural things being knowable mathematically. It is shown that, in Aquinas’s view, mathematics’ constructive part does not conflict with mathematical realism. It is also held that mathematics’ imaginative reasoning is coherent with Aquinas’s doctrine of formal abstraction and his realistism. It focuses on some of Aquinas’s texts, which it places within their textual and doctrinal context and interprets them in the light of some historical elements.
doi_str_mv 10.1017/nbf.2024.55
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_nbf_2024_55</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3158070795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-ddf1e851a3a79f7a153ec8e8e06e0c450b9c2828c626a2d6cf19bb68dc55866e3</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqWw4gKWWKIU24kdZ4WqigJSURE_a8txxtT9iVs7WXTXY8D1ehJSlQWr0dO8eU_zIXRNyYASmt_VpR0wwrIB5yeoR_OMJowQfop6hDCZZEwW5-gixnknRU5oDy2GAfCLbmaw0o0zeomn5RxME_F-941j6_AX1BBcxGNnGufruN_93ON3vwL81t2ERcS-xsNN62p92EX8OnNLH_16tsXe_suOl-jM6mWEq7_ZR5_jh4_RUzKZPj6PhpPEUCmapKosBcmpTnVe2FxTnoKRIIEIICbjpCwMk0wawYRmlTCWFmUpZGU4l0JA2kc3x9x18JsWYqPmvg11V6lSyiXJSV7wznV7dJngYwxg1Tq47qGtokQdaKqOpjrQVJynvx0Wa0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158070795</pqid></control><display><type>article</type><title>Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics</title><source>Cambridge University Press Journals Complete</source><creator>Usma Gómez, Daniel Eduardo</creator><creatorcontrib>Usma Gómez, Daniel Eduardo</creatorcontrib><description>This contribution proposes an interpretation of Thomas Aquinas’s philosophy of mathematics. It is argued that Aquinas’s philosophy of mathematics is a coherent view whose main features enable us to understand it as a moderate realism according to which mathematical objects have an esse intentionale . This esse intentionale involves both mathematicians’ intellectual activity and natural things being knowable mathematically. It is shown that, in Aquinas’s view, mathematics’ constructive part does not conflict with mathematical realism. It is also held that mathematics’ imaginative reasoning is coherent with Aquinas’s doctrine of formal abstraction and his realistism. It focuses on some of Aquinas’s texts, which it places within their textual and doctrinal context and interprets them in the light of some historical elements.</description><identifier>ISSN: 0028-4289</identifier><identifier>EISSN: 1741-2005</identifier><identifier>DOI: 10.1017/nbf.2024.55</identifier><language>eng</language><publisher>Oxford: Cambridge University Press</publisher><subject>Addition &amp; subtraction ; Knowledge ; Liberal arts ; Mathematics ; Multiplication &amp; division ; Philosophy ; Physics ; Principles ; Science</subject><ispartof>New Blackfriars, 2024-09, Vol.105 (5), p.506-529</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of Provincial Council of the English Province of the Order of Preachers.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0007-6747-4621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Usma Gómez, Daniel Eduardo</creatorcontrib><title>Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics</title><title>New Blackfriars</title><description>This contribution proposes an interpretation of Thomas Aquinas’s philosophy of mathematics. It is argued that Aquinas’s philosophy of mathematics is a coherent view whose main features enable us to understand it as a moderate realism according to which mathematical objects have an esse intentionale . This esse intentionale involves both mathematicians’ intellectual activity and natural things being knowable mathematically. It is shown that, in Aquinas’s view, mathematics’ constructive part does not conflict with mathematical realism. It is also held that mathematics’ imaginative reasoning is coherent with Aquinas’s doctrine of formal abstraction and his realistism. It focuses on some of Aquinas’s texts, which it places within their textual and doctrinal context and interprets them in the light of some historical elements.</description><subject>Addition &amp; subtraction</subject><subject>Knowledge</subject><subject>Liberal arts</subject><subject>Mathematics</subject><subject>Multiplication &amp; division</subject><subject>Philosophy</subject><subject>Physics</subject><subject>Principles</subject><subject>Science</subject><issn>0028-4289</issn><issn>1741-2005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAQhS0EEqWw4gKWWKIU24kdZ4WqigJSURE_a8txxtT9iVs7WXTXY8D1ehJSlQWr0dO8eU_zIXRNyYASmt_VpR0wwrIB5yeoR_OMJowQfop6hDCZZEwW5-gixnknRU5oDy2GAfCLbmaw0o0zeomn5RxME_F-941j6_AX1BBcxGNnGufruN_93ON3vwL81t2ERcS-xsNN62p92EX8OnNLH_16tsXe_suOl-jM6mWEq7_ZR5_jh4_RUzKZPj6PhpPEUCmapKosBcmpTnVe2FxTnoKRIIEIICbjpCwMk0wawYRmlTCWFmUpZGU4l0JA2kc3x9x18JsWYqPmvg11V6lSyiXJSV7wznV7dJngYwxg1Tq47qGtokQdaKqOpjrQVJynvx0Wa0I</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Usma Gómez, Daniel Eduardo</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0007-6747-4621</orcidid></search><sort><creationdate>202409</creationdate><title>Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics</title><author>Usma Gómez, Daniel Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-ddf1e851a3a79f7a153ec8e8e06e0c450b9c2828c626a2d6cf19bb68dc55866e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Addition &amp; subtraction</topic><topic>Knowledge</topic><topic>Liberal arts</topic><topic>Mathematics</topic><topic>Multiplication &amp; division</topic><topic>Philosophy</topic><topic>Physics</topic><topic>Principles</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usma Gómez, Daniel Eduardo</creatorcontrib><collection>CrossRef</collection><jtitle>New Blackfriars</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usma Gómez, Daniel Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics</atitle><jtitle>New Blackfriars</jtitle><date>2024-09</date><risdate>2024</risdate><volume>105</volume><issue>5</issue><spage>506</spage><epage>529</epage><pages>506-529</pages><issn>0028-4289</issn><eissn>1741-2005</eissn><abstract>This contribution proposes an interpretation of Thomas Aquinas’s philosophy of mathematics. It is argued that Aquinas’s philosophy of mathematics is a coherent view whose main features enable us to understand it as a moderate realism according to which mathematical objects have an esse intentionale . This esse intentionale involves both mathematicians’ intellectual activity and natural things being knowable mathematically. It is shown that, in Aquinas’s view, mathematics’ constructive part does not conflict with mathematical realism. It is also held that mathematics’ imaginative reasoning is coherent with Aquinas’s doctrine of formal abstraction and his realistism. It focuses on some of Aquinas’s texts, which it places within their textual and doctrinal context and interprets them in the light of some historical elements.</abstract><cop>Oxford</cop><pub>Cambridge University Press</pub><doi>10.1017/nbf.2024.55</doi><tpages>24</tpages><orcidid>https://orcid.org/0009-0007-6747-4621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-4289
ispartof New Blackfriars, 2024-09, Vol.105 (5), p.506-529
issn 0028-4289
1741-2005
language eng
recordid cdi_crossref_primary_10_1017_nbf_2024_55
source Cambridge University Press Journals Complete
subjects Addition & subtraction
Knowledge
Liberal arts
Mathematics
Multiplication & division
Philosophy
Physics
Principles
Science
title Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Are%20Mathematical%20Objects%20%E2%80%98%20sui%20generis%20Fictions%E2%80%99?%20Some%20Remarks%20on%20Aquinas%E2%80%99s%20Philosophy%20of%20Mathematics&rft.jtitle=New%20Blackfriars&rft.au=Usma%20G%C3%B3mez,%20Daniel%20Eduardo&rft.date=2024-09&rft.volume=105&rft.issue=5&rft.spage=506&rft.epage=529&rft.pages=506-529&rft.issn=0028-4289&rft.eissn=1741-2005&rft_id=info:doi/10.1017/nbf.2024.55&rft_dat=%3Cproquest_cross%3E3158070795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158070795&rft_id=info:pmid/&rfr_iscdi=true