Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics
This contribution proposes an interpretation of Thomas Aquinas’s philosophy of mathematics. It is argued that Aquinas’s philosophy of mathematics is a coherent view whose main features enable us to understand it as a moderate realism according to which mathematical objects have an esse intentionale...
Gespeichert in:
Veröffentlicht in: | New Blackfriars 2024-09, Vol.105 (5), p.506-529 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | 5 |
container_start_page | 506 |
container_title | New Blackfriars |
container_volume | 105 |
creator | Usma Gómez, Daniel Eduardo |
description | This contribution proposes an interpretation of Thomas Aquinas’s philosophy of mathematics. It is argued that Aquinas’s philosophy of mathematics is a coherent view whose main features enable us to understand it as a moderate realism according to which mathematical objects have an esse intentionale . This esse intentionale involves both mathematicians’ intellectual activity and natural things being knowable mathematically. It is shown that, in Aquinas’s view, mathematics’ constructive part does not conflict with mathematical realism. It is also held that mathematics’ imaginative reasoning is coherent with Aquinas’s doctrine of formal abstraction and his realistism. It focuses on some of Aquinas’s texts, which it places within their textual and doctrinal context and interprets them in the light of some historical elements. |
doi_str_mv | 10.1017/nbf.2024.55 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_nbf_2024_55</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3158070795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-ddf1e851a3a79f7a153ec8e8e06e0c450b9c2828c626a2d6cf19bb68dc55866e3</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqWw4gKWWKIU24kdZ4WqigJSURE_a8txxtT9iVs7WXTXY8D1ehJSlQWr0dO8eU_zIXRNyYASmt_VpR0wwrIB5yeoR_OMJowQfop6hDCZZEwW5-gixnknRU5oDy2GAfCLbmaw0o0zeomn5RxME_F-941j6_AX1BBcxGNnGufruN_93ON3vwL81t2ERcS-xsNN62p92EX8OnNLH_16tsXe_suOl-jM6mWEq7_ZR5_jh4_RUzKZPj6PhpPEUCmapKosBcmpTnVe2FxTnoKRIIEIICbjpCwMk0wawYRmlTCWFmUpZGU4l0JA2kc3x9x18JsWYqPmvg11V6lSyiXJSV7wznV7dJngYwxg1Tq47qGtokQdaKqOpjrQVJynvx0Wa0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158070795</pqid></control><display><type>article</type><title>Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics</title><source>Cambridge University Press Journals Complete</source><creator>Usma Gómez, Daniel Eduardo</creator><creatorcontrib>Usma Gómez, Daniel Eduardo</creatorcontrib><description>This contribution proposes an interpretation of Thomas Aquinas’s philosophy of mathematics. It is argued that Aquinas’s philosophy of mathematics is a coherent view whose main features enable us to understand it as a moderate realism according to which mathematical objects have an esse intentionale . This esse intentionale involves both mathematicians’ intellectual activity and natural things being knowable mathematically. It is shown that, in Aquinas’s view, mathematics’ constructive part does not conflict with mathematical realism. It is also held that mathematics’ imaginative reasoning is coherent with Aquinas’s doctrine of formal abstraction and his realistism. It focuses on some of Aquinas’s texts, which it places within their textual and doctrinal context and interprets them in the light of some historical elements.</description><identifier>ISSN: 0028-4289</identifier><identifier>EISSN: 1741-2005</identifier><identifier>DOI: 10.1017/nbf.2024.55</identifier><language>eng</language><publisher>Oxford: Cambridge University Press</publisher><subject>Addition & subtraction ; Knowledge ; Liberal arts ; Mathematics ; Multiplication & division ; Philosophy ; Physics ; Principles ; Science</subject><ispartof>New Blackfriars, 2024-09, Vol.105 (5), p.506-529</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press on behalf of Provincial Council of the English Province of the Order of Preachers.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0007-6747-4621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Usma Gómez, Daniel Eduardo</creatorcontrib><title>Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics</title><title>New Blackfriars</title><description>This contribution proposes an interpretation of Thomas Aquinas’s philosophy of mathematics. It is argued that Aquinas’s philosophy of mathematics is a coherent view whose main features enable us to understand it as a moderate realism according to which mathematical objects have an esse intentionale . This esse intentionale involves both mathematicians’ intellectual activity and natural things being knowable mathematically. It is shown that, in Aquinas’s view, mathematics’ constructive part does not conflict with mathematical realism. It is also held that mathematics’ imaginative reasoning is coherent with Aquinas’s doctrine of formal abstraction and his realistism. It focuses on some of Aquinas’s texts, which it places within their textual and doctrinal context and interprets them in the light of some historical elements.</description><subject>Addition & subtraction</subject><subject>Knowledge</subject><subject>Liberal arts</subject><subject>Mathematics</subject><subject>Multiplication & division</subject><subject>Philosophy</subject><subject>Physics</subject><subject>Principles</subject><subject>Science</subject><issn>0028-4289</issn><issn>1741-2005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAQhS0EEqWw4gKWWKIU24kdZ4WqigJSURE_a8txxtT9iVs7WXTXY8D1ehJSlQWr0dO8eU_zIXRNyYASmt_VpR0wwrIB5yeoR_OMJowQfop6hDCZZEwW5-gixnknRU5oDy2GAfCLbmaw0o0zeomn5RxME_F-941j6_AX1BBcxGNnGufruN_93ON3vwL81t2ERcS-xsNN62p92EX8OnNLH_16tsXe_suOl-jM6mWEq7_ZR5_jh4_RUzKZPj6PhpPEUCmapKosBcmpTnVe2FxTnoKRIIEIICbjpCwMk0wawYRmlTCWFmUpZGU4l0JA2kc3x9x18JsWYqPmvg11V6lSyiXJSV7wznV7dJngYwxg1Tq47qGtokQdaKqOpjrQVJynvx0Wa0I</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Usma Gómez, Daniel Eduardo</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0007-6747-4621</orcidid></search><sort><creationdate>202409</creationdate><title>Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics</title><author>Usma Gómez, Daniel Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-ddf1e851a3a79f7a153ec8e8e06e0c450b9c2828c626a2d6cf19bb68dc55866e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Addition & subtraction</topic><topic>Knowledge</topic><topic>Liberal arts</topic><topic>Mathematics</topic><topic>Multiplication & division</topic><topic>Philosophy</topic><topic>Physics</topic><topic>Principles</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usma Gómez, Daniel Eduardo</creatorcontrib><collection>CrossRef</collection><jtitle>New Blackfriars</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usma Gómez, Daniel Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics</atitle><jtitle>New Blackfriars</jtitle><date>2024-09</date><risdate>2024</risdate><volume>105</volume><issue>5</issue><spage>506</spage><epage>529</epage><pages>506-529</pages><issn>0028-4289</issn><eissn>1741-2005</eissn><abstract>This contribution proposes an interpretation of Thomas Aquinas’s philosophy of mathematics. It is argued that Aquinas’s philosophy of mathematics is a coherent view whose main features enable us to understand it as a moderate realism according to which mathematical objects have an esse intentionale . This esse intentionale involves both mathematicians’ intellectual activity and natural things being knowable mathematically. It is shown that, in Aquinas’s view, mathematics’ constructive part does not conflict with mathematical realism. It is also held that mathematics’ imaginative reasoning is coherent with Aquinas’s doctrine of formal abstraction and his realistism. It focuses on some of Aquinas’s texts, which it places within their textual and doctrinal context and interprets them in the light of some historical elements.</abstract><cop>Oxford</cop><pub>Cambridge University Press</pub><doi>10.1017/nbf.2024.55</doi><tpages>24</tpages><orcidid>https://orcid.org/0009-0007-6747-4621</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-4289 |
ispartof | New Blackfriars, 2024-09, Vol.105 (5), p.506-529 |
issn | 0028-4289 1741-2005 |
language | eng |
recordid | cdi_crossref_primary_10_1017_nbf_2024_55 |
source | Cambridge University Press Journals Complete |
subjects | Addition & subtraction Knowledge Liberal arts Mathematics Multiplication & division Philosophy Physics Principles Science |
title | Are Mathematical Objects ‘ sui generis Fictions’? Some Remarks on Aquinas’s Philosophy of Mathematics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Are%20Mathematical%20Objects%20%E2%80%98%20sui%20generis%20Fictions%E2%80%99?%20Some%20Remarks%20on%20Aquinas%E2%80%99s%20Philosophy%20of%20Mathematics&rft.jtitle=New%20Blackfriars&rft.au=Usma%20G%C3%B3mez,%20Daniel%20Eduardo&rft.date=2024-09&rft.volume=105&rft.issue=5&rft.spage=506&rft.epage=529&rft.pages=506-529&rft.issn=0028-4289&rft.eissn=1741-2005&rft_id=info:doi/10.1017/nbf.2024.55&rft_dat=%3Cproquest_cross%3E3158070795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158070795&rft_id=info:pmid/&rfr_iscdi=true |