AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS

In the first part of this paper, we consider several natural axioms in urelement set theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2024-11, p.1-27
1. Verfasser: YAO, BOKAI
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 1
container_title The Journal of symbolic logic
container_volume
creator YAO, BOKAI
description In the first part of this paper, we consider several natural axioms in urelement set theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms form a hierarchy over $\text {ZFCU}_{\text {R}}$ (ZFC with urelements formulated with Replacement) in terms of direct implication. The second part of the paper studies forcing over countable transitive models of $\text {ZFU}_{\text {R}}$ . We propose a new definition of ${\mathbb P}$ -names to address an issue with the existing approach. We then prove the fundamental theorem of forcing with urelements regarding axiom preservation. Moreover, we show that forcing can destroy and recover certain axioms within the previously established hierarchy. Finally, we demonstrate how ground model definability may fail when the ground model contains a proper class of urelements.
doi_str_mv 10.1017/jsl.2024.58
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jsl_2024_58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_jsl_2024_58</sourcerecordid><originalsourceid>FETCH-LOGICAL-c158t-e761382c52c967a1a754cae34c100319661eb3026cee93d9a671e6bc658cb9763</originalsourceid><addsrcrecordid>eNotz81Kw0AUhuFBFIzVlTcwe0k8Z_4yswxx2gykCaQp_mzCZJyCpaIkbrz7tuji49198BByj5AhYP64nw8ZAyYyqS9IgkbwVGqtLkkCwFgqNLJrcjPPewCQRuiE6OLFteuid2-ntQ0tmie6bLvSNSvqGrqxPe0r23av9Nn1Fd12trZr2_SbW3K184c53v13QbZL25dVWrcrVxZ1GlDqnzTmCrlmQbJgVO7R51IEH7kICMDRKIVx5MBUiNHwd-NVjlGNQUkdRpMrviAPf79h-prnKe6G7-nj00-_A8JwRg8n9HBGD1LzI-LERDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS</title><source>Cambridge University Press Journals Complete</source><creator>YAO, BOKAI</creator><creatorcontrib>YAO, BOKAI</creatorcontrib><description>In the first part of this paper, we consider several natural axioms in urelement set theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms form a hierarchy over $\text {ZFCU}_{\text {R}}$ (ZFC with urelements formulated with Replacement) in terms of direct implication. The second part of the paper studies forcing over countable transitive models of $\text {ZFU}_{\text {R}}$ . We propose a new definition of ${\mathbb P}$ -names to address an issue with the existing approach. We then prove the fundamental theorem of forcing with urelements regarding axiom preservation. Moreover, we show that forcing can destroy and recover certain axioms within the previously established hierarchy. Finally, we demonstrate how ground model definability may fail when the ground model contains a proper class of urelements.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2024.58</identifier><language>eng</language><ispartof>The Journal of symbolic logic, 2024-11, p.1-27</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c158t-e761382c52c967a1a754cae34c100319661eb3026cee93d9a671e6bc658cb9763</cites><orcidid>0000-0002-7541-8714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>YAO, BOKAI</creatorcontrib><title>AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS</title><title>The Journal of symbolic logic</title><description>In the first part of this paper, we consider several natural axioms in urelement set theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms form a hierarchy over $\text {ZFCU}_{\text {R}}$ (ZFC with urelements formulated with Replacement) in terms of direct implication. The second part of the paper studies forcing over countable transitive models of $\text {ZFU}_{\text {R}}$ . We propose a new definition of ${\mathbb P}$ -names to address an issue with the existing approach. We then prove the fundamental theorem of forcing with urelements regarding axiom preservation. Moreover, we show that forcing can destroy and recover certain axioms within the previously established hierarchy. Finally, we demonstrate how ground model definability may fail when the ground model contains a proper class of urelements.</description><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotz81Kw0AUhuFBFIzVlTcwe0k8Z_4yswxx2gykCaQp_mzCZJyCpaIkbrz7tuji49198BByj5AhYP64nw8ZAyYyqS9IgkbwVGqtLkkCwFgqNLJrcjPPewCQRuiE6OLFteuid2-ntQ0tmie6bLvSNSvqGrqxPe0r23av9Nn1Fd12trZr2_SbW3K184c53v13QbZL25dVWrcrVxZ1GlDqnzTmCrlmQbJgVO7R51IEH7kICMDRKIVx5MBUiNHwd-NVjlGNQUkdRpMrviAPf79h-prnKe6G7-nj00-_A8JwRg8n9HBGD1LzI-LERDA</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>YAO, BOKAI</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7541-8714</orcidid></search><sort><creationdate>20241111</creationdate><title>AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS</title><author>YAO, BOKAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c158t-e761382c52c967a1a754cae34c100319661eb3026cee93d9a671e6bc658cb9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YAO, BOKAI</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAO, BOKAI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2024-11-11</date><risdate>2024</risdate><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>In the first part of this paper, we consider several natural axioms in urelement set theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms form a hierarchy over $\text {ZFCU}_{\text {R}}$ (ZFC with urelements formulated with Replacement) in terms of direct implication. The second part of the paper studies forcing over countable transitive models of $\text {ZFU}_{\text {R}}$ . We propose a new definition of ${\mathbb P}$ -names to address an issue with the existing approach. We then prove the fundamental theorem of forcing with urelements regarding axiom preservation. Moreover, we show that forcing can destroy and recover certain axioms within the previously established hierarchy. Finally, we demonstrate how ground model definability may fail when the ground model contains a proper class of urelements.</abstract><doi>10.1017/jsl.2024.58</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-7541-8714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4812
ispartof The Journal of symbolic logic, 2024-11, p.1-27
issn 0022-4812
1943-5886
language eng
recordid cdi_crossref_primary_10_1017_jsl_2024_58
source Cambridge University Press Journals Complete
title AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AXIOMATIZATION%20AND%20FORCING%20IN%20SET%20THEORY%20WITH%20URELEMENTS&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=YAO,%20BOKAI&rft.date=2024-11-11&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2024.58&rft_dat=%3Ccrossref%3E10_1017_jsl_2024_58%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true