AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS
In the first part of this paper, we consider several natural axioms in urelement set theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms form...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2024-11, p.1-27 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | The Journal of symbolic logic |
container_volume | |
creator | YAO, BOKAI |
description | In the first part of this paper, we consider several natural axioms in urelement set theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms form a hierarchy over $\text {ZFCU}_{\text {R}}$ (ZFC with urelements formulated with Replacement) in terms of direct implication. The second part of the paper studies forcing over countable transitive models of $\text {ZFU}_{\text {R}}$ . We propose a new definition of ${\mathbb P}$ -names to address an issue with the existing approach. We then prove the fundamental theorem of forcing with urelements regarding axiom preservation. Moreover, we show that forcing can destroy and recover certain axioms within the previously established hierarchy. Finally, we demonstrate how ground model definability may fail when the ground model contains a proper class of urelements. |
doi_str_mv | 10.1017/jsl.2024.58 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jsl_2024_58</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_jsl_2024_58</sourcerecordid><originalsourceid>FETCH-LOGICAL-c158t-e761382c52c967a1a754cae34c100319661eb3026cee93d9a671e6bc658cb9763</originalsourceid><addsrcrecordid>eNotz81Kw0AUhuFBFIzVlTcwe0k8Z_4yswxx2gykCaQp_mzCZJyCpaIkbrz7tuji49198BByj5AhYP64nw8ZAyYyqS9IgkbwVGqtLkkCwFgqNLJrcjPPewCQRuiE6OLFteuid2-ntQ0tmie6bLvSNSvqGrqxPe0r23av9Nn1Fd12trZr2_SbW3K184c53v13QbZL25dVWrcrVxZ1GlDqnzTmCrlmQbJgVO7R51IEH7kICMDRKIVx5MBUiNHwd-NVjlGNQUkdRpMrviAPf79h-prnKe6G7-nj00-_A8JwRg8n9HBGD1LzI-LERDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS</title><source>Cambridge University Press Journals Complete</source><creator>YAO, BOKAI</creator><creatorcontrib>YAO, BOKAI</creatorcontrib><description>In the first part of this paper, we consider several natural axioms in urelement set theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms form a hierarchy over $\text {ZFCU}_{\text {R}}$ (ZFC with urelements formulated with Replacement) in terms of direct implication. The second part of the paper studies forcing over countable transitive models of $\text {ZFU}_{\text {R}}$ . We propose a new definition of ${\mathbb P}$ -names to address an issue with the existing approach. We then prove the fundamental theorem of forcing with urelements regarding axiom preservation. Moreover, we show that forcing can destroy and recover certain axioms within the previously established hierarchy. Finally, we demonstrate how ground model definability may fail when the ground model contains a proper class of urelements.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2024.58</identifier><language>eng</language><ispartof>The Journal of symbolic logic, 2024-11, p.1-27</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c158t-e761382c52c967a1a754cae34c100319661eb3026cee93d9a671e6bc658cb9763</cites><orcidid>0000-0002-7541-8714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>YAO, BOKAI</creatorcontrib><title>AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS</title><title>The Journal of symbolic logic</title><description>In the first part of this paper, we consider several natural axioms in urelement set theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms form a hierarchy over $\text {ZFCU}_{\text {R}}$ (ZFC with urelements formulated with Replacement) in terms of direct implication. The second part of the paper studies forcing over countable transitive models of $\text {ZFU}_{\text {R}}$ . We propose a new definition of ${\mathbb P}$ -names to address an issue with the existing approach. We then prove the fundamental theorem of forcing with urelements regarding axiom preservation. Moreover, we show that forcing can destroy and recover certain axioms within the previously established hierarchy. Finally, we demonstrate how ground model definability may fail when the ground model contains a proper class of urelements.</description><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotz81Kw0AUhuFBFIzVlTcwe0k8Z_4yswxx2gykCaQp_mzCZJyCpaIkbrz7tuji49198BByj5AhYP64nw8ZAyYyqS9IgkbwVGqtLkkCwFgqNLJrcjPPewCQRuiE6OLFteuid2-ntQ0tmie6bLvSNSvqGrqxPe0r23av9Nn1Fd12trZr2_SbW3K184c53v13QbZL25dVWrcrVxZ1GlDqnzTmCrlmQbJgVO7R51IEH7kICMDRKIVx5MBUiNHwd-NVjlGNQUkdRpMrviAPf79h-prnKe6G7-nj00-_A8JwRg8n9HBGD1LzI-LERDA</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>YAO, BOKAI</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7541-8714</orcidid></search><sort><creationdate>20241111</creationdate><title>AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS</title><author>YAO, BOKAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c158t-e761382c52c967a1a754cae34c100319661eb3026cee93d9a671e6bc658cb9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YAO, BOKAI</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAO, BOKAI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2024-11-11</date><risdate>2024</risdate><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>In the first part of this paper, we consider several natural axioms in urelement set theory, including the Collection Principle, the Reflection Principle, the Dependent Choice scheme and its generalizations, as well as other axioms specifically concerning urelements. We prove that these axioms form a hierarchy over $\text {ZFCU}_{\text {R}}$ (ZFC with urelements formulated with Replacement) in terms of direct implication. The second part of the paper studies forcing over countable transitive models of $\text {ZFU}_{\text {R}}$ . We propose a new definition of ${\mathbb P}$ -names to address an issue with the existing approach. We then prove the fundamental theorem of forcing with urelements regarding axiom preservation. Moreover, we show that forcing can destroy and recover certain axioms within the previously established hierarchy. Finally, we demonstrate how ground model definability may fail when the ground model contains a proper class of urelements.</abstract><doi>10.1017/jsl.2024.58</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-7541-8714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 2024-11, p.1-27 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_crossref_primary_10_1017_jsl_2024_58 |
source | Cambridge University Press Journals Complete |
title | AXIOMATIZATION AND FORCING IN SET THEORY WITH URELEMENTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AXIOMATIZATION%20AND%20FORCING%20IN%20SET%20THEORY%20WITH%20URELEMENTS&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=YAO,%20BOKAI&rft.date=2024-11-11&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2024.58&rft_dat=%3Ccrossref%3E10_1017_jsl_2024_58%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |