FORKING, IMAGINARIES, AND OTHER FEATURES OF
We study the generic theory of algebraically closed fields of fixed positive characteristic with a predicate for an additive subgroup, called $\mathrm {ACFG}$ . This theory was introduced in [16] as a new example of $\mathrm {NSOP}_{1}$ nonsimple theory. In this paper we describe more features of $\...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2021-06, Vol.86 (2), p.669-700 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 700 |
---|---|
container_issue | 2 |
container_start_page | 669 |
container_title | The Journal of symbolic logic |
container_volume | 86 |
creator | D’ELBÉE, CHRISTIAN |
description | We study the generic theory of algebraically closed fields of fixed positive characteristic with a predicate for an additive subgroup, called
$\mathrm {ACFG}$
. This theory was introduced in [16] as a new example of
$\mathrm {NSOP}_{1}$
nonsimple theory. In this paper we describe more features of
$\mathrm {ACFG}$
, such as imaginaries. We also study various independence relations in
$\mathrm {ACFG}$
, such as Kim-independence or forking independence, and describe interactions between them. |
doi_str_mv | 10.1017/jsl.2021.34 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jsl_2021_34</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_jsl_2021_34</sourcerecordid><originalsourceid>FETCH-LOGICAL-c784-80ed6007b744499954e5ecd2b120d47ac0a3843781621827e44ab123d2b3d2fd3</originalsourceid><addsrcrecordid>eNotj0FPg0AUhDdGE7H15B_gbsH3dh_s7nFTgW5sIaF43lBYEpsaDXvy30uNh8kcZjKZj7EnhBQB5cs5XFIOHFNBNyxCTSLJlMpvWQTAeUIK-T17COEMAJkmFbHnsmnfbF1tYnswla1Na4vjJjb1a9x0u6KNy8J0721xjJtyze6m_hL847-vWFcW3XaX7JvKbs0-GaSiRIEfcwB5kkSktc7IZ34Y-Qk5jCT7AXqhSEiFOUfFpSfql0wsjUXTKFbLqb_ZYf4KYfaT-54_Pvv5xyG4K6ZbMN0V0wkSv7nuP00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FORKING, IMAGINARIES, AND OTHER FEATURES OF</title><source>Cambridge Journals</source><creator>D’ELBÉE, CHRISTIAN</creator><creatorcontrib>D’ELBÉE, CHRISTIAN</creatorcontrib><description>We study the generic theory of algebraically closed fields of fixed positive characteristic with a predicate for an additive subgroup, called
$\mathrm {ACFG}$
. This theory was introduced in [16] as a new example of
$\mathrm {NSOP}_{1}$
nonsimple theory. In this paper we describe more features of
$\mathrm {ACFG}$
, such as imaginaries. We also study various independence relations in
$\mathrm {ACFG}$
, such as Kim-independence or forking independence, and describe interactions between them.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2021.34</identifier><language>eng</language><ispartof>The Journal of symbolic logic, 2021-06, Vol.86 (2), p.669-700</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c784-80ed6007b744499954e5ecd2b120d47ac0a3843781621827e44ab123d2b3d2fd3</citedby><cites>FETCH-LOGICAL-c784-80ed6007b744499954e5ecd2b120d47ac0a3843781621827e44ab123d2b3d2fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>D’ELBÉE, CHRISTIAN</creatorcontrib><title>FORKING, IMAGINARIES, AND OTHER FEATURES OF</title><title>The Journal of symbolic logic</title><description>We study the generic theory of algebraically closed fields of fixed positive characteristic with a predicate for an additive subgroup, called
$\mathrm {ACFG}$
. This theory was introduced in [16] as a new example of
$\mathrm {NSOP}_{1}$
nonsimple theory. In this paper we describe more features of
$\mathrm {ACFG}$
, such as imaginaries. We also study various independence relations in
$\mathrm {ACFG}$
, such as Kim-independence or forking independence, and describe interactions between them.</description><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotj0FPg0AUhDdGE7H15B_gbsH3dh_s7nFTgW5sIaF43lBYEpsaDXvy30uNh8kcZjKZj7EnhBQB5cs5XFIOHFNBNyxCTSLJlMpvWQTAeUIK-T17COEMAJkmFbHnsmnfbF1tYnswla1Na4vjJjb1a9x0u6KNy8J0721xjJtyze6m_hL847-vWFcW3XaX7JvKbs0-GaSiRIEfcwB5kkSktc7IZ34Y-Qk5jCT7AXqhSEiFOUfFpSfql0wsjUXTKFbLqb_ZYf4KYfaT-54_Pvv5xyG4K6ZbMN0V0wkSv7nuP00</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>D’ELBÉE, CHRISTIAN</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202106</creationdate><title>FORKING, IMAGINARIES, AND OTHER FEATURES OF</title><author>D’ELBÉE, CHRISTIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c784-80ed6007b744499954e5ecd2b120d47ac0a3843781621827e44ab123d2b3d2fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’ELBÉE, CHRISTIAN</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’ELBÉE, CHRISTIAN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FORKING, IMAGINARIES, AND OTHER FEATURES OF</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2021-06</date><risdate>2021</risdate><volume>86</volume><issue>2</issue><spage>669</spage><epage>700</epage><pages>669-700</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We study the generic theory of algebraically closed fields of fixed positive characteristic with a predicate for an additive subgroup, called
$\mathrm {ACFG}$
. This theory was introduced in [16] as a new example of
$\mathrm {NSOP}_{1}$
nonsimple theory. In this paper we describe more features of
$\mathrm {ACFG}$
, such as imaginaries. We also study various independence relations in
$\mathrm {ACFG}$
, such as Kim-independence or forking independence, and describe interactions between them.</abstract><doi>10.1017/jsl.2021.34</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 2021-06, Vol.86 (2), p.669-700 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_crossref_primary_10_1017_jsl_2021_34 |
source | Cambridge Journals |
title | FORKING, IMAGINARIES, AND OTHER FEATURES OF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FORKING,%20IMAGINARIES,%20AND%20OTHER%20FEATURES%20OF&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=D%E2%80%99ELB%C3%89E,%20CHRISTIAN&rft.date=2021-06&rft.volume=86&rft.issue=2&rft.spage=669&rft.epage=700&rft.pages=669-700&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2021.34&rft_dat=%3Ccrossref%3E10_1017_jsl_2021_34%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |