IS A SPECTRUM OF A NON-DISINTEGRATED FLAT STRONGLY MINIMAL MODEL COMPLETE THEORY IN A LANGUAGE WITH FINITE SIGNATURE

We build a new spectrum of recursive models ( $ \operatorname {\mathrm {SRM}}(T)$ ) of a strongly minimal theory. This theory is non-disintegrated, flat, model complete, and in a language with a finite signature.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2021-12, Vol.86 (4), p.1632-1656
Hauptverfasser: ANDREWS, URI, MERMELSTEIN, OMER
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1656
container_issue 4
container_start_page 1632
container_title The Journal of symbolic logic
container_volume 86
creator ANDREWS, URI
MERMELSTEIN, OMER
description We build a new spectrum of recursive models ( $ \operatorname {\mathrm {SRM}}(T)$ ) of a strongly minimal theory. This theory is non-disintegrated, flat, model complete, and in a language with a finite signature.
doi_str_mv 10.1017/jsl.2021.11
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jsl_2021_11</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_jsl_2021_11</sourcerecordid><originalsourceid>FETCH-LOGICAL-c106t-6ac36696d20dad53562aabfc2267fd5ea69753bf761cfaa484a8102b71d6f3633</originalsourceid><addsrcrecordid>eNotkMFLwzAchYMoOKcn_4HcpTO_pE3bY-jSLpAmo02RnUrWLuCYKK0X_3s79PR48N53-BB6BrIBAunreb5sKKGwAbhBK8hjFiVZxm_RihBKozgDeo8e5vlMCEnyOFuhb9Vigdu9LFzT1diWSzPWRFvVKuNk1Qgnt7jUwuHWNdZU-oBrZVQtNK7tVmpc2HqvpZPY7aRtDliZBaGFqTpRSfym3A6Xy2EZtKoywnWNfER3wV_m09N_rlFXSlfsIm0rVQgdDUD4d8T9wDjP-UjJ6MeEJZx6fwwDpTwNY3LyPE8TdgwphyF4H2exz4DQYwojD4wztkYvf9xh-pzn6RT6r-n9w08_PZD-KqxfhPVXYT0A-wWNd1S5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>IS A SPECTRUM OF A NON-DISINTEGRATED FLAT STRONGLY MINIMAL MODEL COMPLETE THEORY IN A LANGUAGE WITH FINITE SIGNATURE</title><source>Cambridge University Press Journals Complete</source><creator>ANDREWS, URI ; MERMELSTEIN, OMER</creator><creatorcontrib>ANDREWS, URI ; MERMELSTEIN, OMER</creatorcontrib><description>We build a new spectrum of recursive models ( $ \operatorname {\mathrm {SRM}}(T)$ ) of a strongly minimal theory. This theory is non-disintegrated, flat, model complete, and in a language with a finite signature.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2021.11</identifier><language>eng</language><ispartof>The Journal of symbolic logic, 2021-12, Vol.86 (4), p.1632-1656</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c106t-6ac36696d20dad53562aabfc2267fd5ea69753bf761cfaa484a8102b71d6f3633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>ANDREWS, URI</creatorcontrib><creatorcontrib>MERMELSTEIN, OMER</creatorcontrib><title>IS A SPECTRUM OF A NON-DISINTEGRATED FLAT STRONGLY MINIMAL MODEL COMPLETE THEORY IN A LANGUAGE WITH FINITE SIGNATURE</title><title>The Journal of symbolic logic</title><description>We build a new spectrum of recursive models ( $ \operatorname {\mathrm {SRM}}(T)$ ) of a strongly minimal theory. This theory is non-disintegrated, flat, model complete, and in a language with a finite signature.</description><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkMFLwzAchYMoOKcn_4HcpTO_pE3bY-jSLpAmo02RnUrWLuCYKK0X_3s79PR48N53-BB6BrIBAunreb5sKKGwAbhBK8hjFiVZxm_RihBKozgDeo8e5vlMCEnyOFuhb9Vigdu9LFzT1diWSzPWRFvVKuNk1Qgnt7jUwuHWNdZU-oBrZVQtNK7tVmpc2HqvpZPY7aRtDliZBaGFqTpRSfym3A6Xy2EZtKoywnWNfER3wV_m09N_rlFXSlfsIm0rVQgdDUD4d8T9wDjP-UjJ6MeEJZx6fwwDpTwNY3LyPE8TdgwphyF4H2exz4DQYwojD4wztkYvf9xh-pzn6RT6r-n9w08_PZD-KqxfhPVXYT0A-wWNd1S5</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>ANDREWS, URI</creator><creator>MERMELSTEIN, OMER</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202112</creationdate><title>IS A SPECTRUM OF A NON-DISINTEGRATED FLAT STRONGLY MINIMAL MODEL COMPLETE THEORY IN A LANGUAGE WITH FINITE SIGNATURE</title><author>ANDREWS, URI ; MERMELSTEIN, OMER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c106t-6ac36696d20dad53562aabfc2267fd5ea69753bf761cfaa484a8102b71d6f3633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ANDREWS, URI</creatorcontrib><creatorcontrib>MERMELSTEIN, OMER</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ANDREWS, URI</au><au>MERMELSTEIN, OMER</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IS A SPECTRUM OF A NON-DISINTEGRATED FLAT STRONGLY MINIMAL MODEL COMPLETE THEORY IN A LANGUAGE WITH FINITE SIGNATURE</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2021-12</date><risdate>2021</risdate><volume>86</volume><issue>4</issue><spage>1632</spage><epage>1656</epage><pages>1632-1656</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We build a new spectrum of recursive models ( $ \operatorname {\mathrm {SRM}}(T)$ ) of a strongly minimal theory. This theory is non-disintegrated, flat, model complete, and in a language with a finite signature.</abstract><doi>10.1017/jsl.2021.11</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4812
ispartof The Journal of symbolic logic, 2021-12, Vol.86 (4), p.1632-1656
issn 0022-4812
1943-5886
language eng
recordid cdi_crossref_primary_10_1017_jsl_2021_11
source Cambridge University Press Journals Complete
title IS A SPECTRUM OF A NON-DISINTEGRATED FLAT STRONGLY MINIMAL MODEL COMPLETE THEORY IN A LANGUAGE WITH FINITE SIGNATURE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IS%20A%20SPECTRUM%20OF%20A%20NON-DISINTEGRATED%20FLAT%20STRONGLY%20MINIMAL%20MODEL%20COMPLETE%20THEORY%20IN%20A%20LANGUAGE%20WITH%20FINITE%20SIGNATURE&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=ANDREWS,%20URI&rft.date=2021-12&rft.volume=86&rft.issue=4&rft.spage=1632&rft.epage=1656&rft.pages=1632-1656&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2021.11&rft_dat=%3Ccrossref%3E10_1017_jsl_2021_11%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true