THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS

We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2022-06, Vol.87 (2), p.508-526
Hauptverfasser: SCHINDLER, RALF, WILSON, TREVOR M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 526
container_issue 2
container_start_page 508
container_title The Journal of symbolic logic
container_volume 87
creator SCHINDLER, RALF
WILSON, TREVOR M.
description We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if $0^\sharp $ exists then every Silver indiscernible is VSS in L. We also show that the statement $\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$ , where $\operatorname {\mathrm {uB}}$ is the pointclass of all universally Baire sets of reals, is equiconsistent modulo ZFC with the existence of a $\Sigma _2$ -reflecting VSS cardinal.
doi_str_mv 10.1017/jsl.2019.63
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jsl_2019_63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jsl_2019_63</cupid><sourcerecordid>10_1017_jsl_2019_63</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-fc0acf05adaf02d7eaad5b88edc72a39c1ae33c64a28daf1235b1a851ee0942e3</originalsourceid><addsrcrecordid>eNptkEFLwzAUx4MoOKcnv0Du0vmStF16rCVdC6UdSSbuFLI0lY3NSasHv70t7ujp8Xi_9-fPD6FHAgsCZPl8GI4LCiRZxOwKzUgSsiDiPL5GMwBKg5ATeovuhuEAAFES8hl604XAWVOrUmlRZ1ustBT1She4yfF0WwuZi0xjJTRey2Zc9RbnjcSbunwVUqVVtcUvaSnFhKjpTYq0UvfoprPHwT9c5hxtcqGzIqiaVZmlVeBoHH8FnQPrOohsazug7dJb20Y7zn3rltSyxBHrGXNxaCkfEUJZtCOWR8R7SELq2Rw9_eW6_jwMve_MZ78_2f7HEDCTFDNKMZMUE7ORDi60Pe36ffvuzeH83X-MDf_lfwHnCF3F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS</title><source>Cambridge University Press Journals Complete</source><creator>SCHINDLER, RALF ; WILSON, TREVOR M.</creator><creatorcontrib>SCHINDLER, RALF ; WILSON, TREVOR M.</creatorcontrib><description>We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if $0^\sharp $ exists then every Silver indiscernible is VSS in L. We also show that the statement $\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$ , where $\operatorname {\mathrm {uB}}$ is the pointclass of all universally Baire sets of reals, is equiconsistent modulo ZFC with the existence of a $\Sigma _2$ -reflecting VSS cardinal.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2019.63</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><ispartof>The Journal of symbolic logic, 2022-06, Vol.87 (2), p.508-526</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-fc0acf05adaf02d7eaad5b88edc72a39c1ae33c64a28daf1235b1a851ee0942e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002248121900063X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>SCHINDLER, RALF</creatorcontrib><creatorcontrib>WILSON, TREVOR M.</creatorcontrib><title>THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS</title><title>The Journal of symbolic logic</title><addtitle>J. symb. log</addtitle><description>We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if $0^\sharp $ exists then every Silver indiscernible is VSS in L. We also show that the statement $\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$ , where $\operatorname {\mathrm {uB}}$ is the pointclass of all universally Baire sets of reals, is equiconsistent modulo ZFC with the existence of a $\Sigma _2$ -reflecting VSS cardinal.</description><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><recordid>eNptkEFLwzAUx4MoOKcnv0Du0vmStF16rCVdC6UdSSbuFLI0lY3NSasHv70t7ujp8Xi_9-fPD6FHAgsCZPl8GI4LCiRZxOwKzUgSsiDiPL5GMwBKg5ATeovuhuEAAFES8hl604XAWVOrUmlRZ1ustBT1She4yfF0WwuZi0xjJTRey2Zc9RbnjcSbunwVUqVVtcUvaSnFhKjpTYq0UvfoprPHwT9c5hxtcqGzIqiaVZmlVeBoHH8FnQPrOohsazug7dJb20Y7zn3rltSyxBHrGXNxaCkfEUJZtCOWR8R7SELq2Rw9_eW6_jwMve_MZ78_2f7HEDCTFDNKMZMUE7ORDi60Pe36ffvuzeH83X-MDf_lfwHnCF3F</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>SCHINDLER, RALF</creator><creator>WILSON, TREVOR M.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS</title><author>SCHINDLER, RALF ; WILSON, TREVOR M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-fc0acf05adaf02d7eaad5b88edc72a39c1ae33c64a28daf1235b1a851ee0942e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHINDLER, RALF</creatorcontrib><creatorcontrib>WILSON, TREVOR M.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHINDLER, RALF</au><au>WILSON, TREVOR M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS</atitle><jtitle>The Journal of symbolic logic</jtitle><addtitle>J. symb. log</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>87</volume><issue>2</issue><spage>508</spage><epage>526</epage><pages>508-526</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if $0^\sharp $ exists then every Silver indiscernible is VSS in L. We also show that the statement $\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$ , where $\operatorname {\mathrm {uB}}$ is the pointclass of all universally Baire sets of reals, is equiconsistent modulo ZFC with the existence of a $\Sigma _2$ -reflecting VSS cardinal.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/jsl.2019.63</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4812
ispartof The Journal of symbolic logic, 2022-06, Vol.87 (2), p.508-526
issn 0022-4812
1943-5886
language eng
recordid cdi_crossref_primary_10_1017_jsl_2019_63
source Cambridge University Press Journals Complete
title THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20CONSISTENCY%20STRENGTH%20OF%20THE%20PERFECT%20SET%20PROPERTY%20FOR%20UNIVERSALLY%20BAIRE%20SETS%20OF%20REALS&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=SCHINDLER,%20RALF&rft.date=2022-06-01&rft.volume=87&rft.issue=2&rft.spage=508&rft.epage=526&rft.pages=508-526&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2019.63&rft_dat=%3Ccambridge_cross%3E10_1017_jsl_2019_63%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_jsl_2019_63&rfr_iscdi=true