THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS
We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals b...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2022-06, Vol.87 (2), p.508-526 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 526 |
---|---|
container_issue | 2 |
container_start_page | 508 |
container_title | The Journal of symbolic logic |
container_volume | 87 |
creator | SCHINDLER, RALF WILSON, TREVOR M. |
description | We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if
$0^\sharp $
exists then every Silver indiscernible is VSS in L. We also show that the statement
$\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$
, where
$\operatorname {\mathrm {uB}}$
is the pointclass of all universally Baire sets of reals, is equiconsistent modulo ZFC with the existence of a
$\Sigma _2$
-reflecting VSS cardinal. |
doi_str_mv | 10.1017/jsl.2019.63 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jsl_2019_63</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jsl_2019_63</cupid><sourcerecordid>10_1017_jsl_2019_63</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-fc0acf05adaf02d7eaad5b88edc72a39c1ae33c64a28daf1235b1a851ee0942e3</originalsourceid><addsrcrecordid>eNptkEFLwzAUx4MoOKcnv0Du0vmStF16rCVdC6UdSSbuFLI0lY3NSasHv70t7ujp8Xi_9-fPD6FHAgsCZPl8GI4LCiRZxOwKzUgSsiDiPL5GMwBKg5ATeovuhuEAAFES8hl604XAWVOrUmlRZ1ustBT1She4yfF0WwuZi0xjJTRey2Zc9RbnjcSbunwVUqVVtcUvaSnFhKjpTYq0UvfoprPHwT9c5hxtcqGzIqiaVZmlVeBoHH8FnQPrOohsazug7dJb20Y7zn3rltSyxBHrGXNxaCkfEUJZtCOWR8R7SELq2Rw9_eW6_jwMve_MZ78_2f7HEDCTFDNKMZMUE7ORDi60Pe36ffvuzeH83X-MDf_lfwHnCF3F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS</title><source>Cambridge University Press Journals Complete</source><creator>SCHINDLER, RALF ; WILSON, TREVOR M.</creator><creatorcontrib>SCHINDLER, RALF ; WILSON, TREVOR M.</creatorcontrib><description>We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if
$0^\sharp $
exists then every Silver indiscernible is VSS in L. We also show that the statement
$\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$
, where
$\operatorname {\mathrm {uB}}$
is the pointclass of all universally Baire sets of reals, is equiconsistent modulo ZFC with the existence of a
$\Sigma _2$
-reflecting VSS cardinal.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2019.63</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><ispartof>The Journal of symbolic logic, 2022-06, Vol.87 (2), p.508-526</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-fc0acf05adaf02d7eaad5b88edc72a39c1ae33c64a28daf1235b1a851ee0942e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002248121900063X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>SCHINDLER, RALF</creatorcontrib><creatorcontrib>WILSON, TREVOR M.</creatorcontrib><title>THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS</title><title>The Journal of symbolic logic</title><addtitle>J. symb. log</addtitle><description>We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if
$0^\sharp $
exists then every Silver indiscernible is VSS in L. We also show that the statement
$\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$
, where
$\operatorname {\mathrm {uB}}$
is the pointclass of all universally Baire sets of reals, is equiconsistent modulo ZFC with the existence of a
$\Sigma _2$
-reflecting VSS cardinal.</description><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><recordid>eNptkEFLwzAUx4MoOKcnv0Du0vmStF16rCVdC6UdSSbuFLI0lY3NSasHv70t7ujp8Xi_9-fPD6FHAgsCZPl8GI4LCiRZxOwKzUgSsiDiPL5GMwBKg5ATeovuhuEAAFES8hl604XAWVOrUmlRZ1ustBT1She4yfF0WwuZi0xjJTRey2Zc9RbnjcSbunwVUqVVtcUvaSnFhKjpTYq0UvfoprPHwT9c5hxtcqGzIqiaVZmlVeBoHH8FnQPrOohsazug7dJb20Y7zn3rltSyxBHrGXNxaCkfEUJZtCOWR8R7SELq2Rw9_eW6_jwMve_MZ78_2f7HEDCTFDNKMZMUE7ORDi60Pe36ffvuzeH83X-MDf_lfwHnCF3F</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>SCHINDLER, RALF</creator><creator>WILSON, TREVOR M.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS</title><author>SCHINDLER, RALF ; WILSON, TREVOR M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-fc0acf05adaf02d7eaad5b88edc72a39c1ae33c64a28daf1235b1a851ee0942e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHINDLER, RALF</creatorcontrib><creatorcontrib>WILSON, TREVOR M.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHINDLER, RALF</au><au>WILSON, TREVOR M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS</atitle><jtitle>The Journal of symbolic logic</jtitle><addtitle>J. symb. log</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>87</volume><issue>2</issue><spage>508</spage><epage>526</epage><pages>508-526</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We show that the statement “every universally Baire set of reals has the perfect set property” is equiconsistent modulo ZFC with the existence of a cardinal that we call virtually Shelah for supercompactness (VSS). These cardinals resemble Shelah cardinals and Shelah-for-supercompactness cardinals but are much weaker: if
$0^\sharp $
exists then every Silver indiscernible is VSS in L. We also show that the statement
$\operatorname {\mathrm {uB}} = {\boldsymbol {\Delta }}^1_2$
, where
$\operatorname {\mathrm {uB}}$
is the pointclass of all universally Baire sets of reals, is equiconsistent modulo ZFC with the existence of a
$\Sigma _2$
-reflecting VSS cardinal.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/jsl.2019.63</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 2022-06, Vol.87 (2), p.508-526 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_crossref_primary_10_1017_jsl_2019_63 |
source | Cambridge University Press Journals Complete |
title | THE CONSISTENCY STRENGTH OF THE PERFECT SET PROPERTY FOR UNIVERSALLY BAIRE SETS OF REALS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20CONSISTENCY%20STRENGTH%20OF%20THE%20PERFECT%20SET%20PROPERTY%20FOR%20UNIVERSALLY%20BAIRE%20SETS%20OF%20REALS&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=SCHINDLER,%20RALF&rft.date=2022-06-01&rft.volume=87&rft.issue=2&rft.spage=508&rft.epage=526&rft.pages=508-526&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2019.63&rft_dat=%3Ccambridge_cross%3E10_1017_jsl_2019_63%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_jsl_2019_63&rfr_iscdi=true |