Shock induced aerobreakup of a droplet
The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave stru...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-12, Vol.929, Article A27 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 929 |
creator | Sharma, Shubham Pratap Singh, Awanish Srinivas Rao, S. Kumar, Aloke Basu, Saptarshi |
description | The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers $(We\sim 30\text{--}15\,000)$. A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers $(We\sim 800)$. For $We > 1000$, the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed. |
doi_str_mv | 10.1017/jfm.2021.860 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jfm_2021_860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_860</cupid><sourcerecordid>2586407430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-d5f9033d6c24ca7193d26a05f08410d12ff432531e62d5477a7bad54911315003</originalsourceid><addsrcrecordid>eNptkE1Lw0AURQdRMFZ3_oCA4MrE9-YzWUqxKhRcqOthkpnRpE0nTpqF_96EFty4um9x3r1wCLlGyBFQ3be-yylQzAsJJyRBLstMSS5OSQJAaYZI4ZxcDEMLgAxKlZDbt69Qb9JmZ8fa2dS4GKrozGbs0-BTk9oY-q3bX5Izb7aDuzrmgnysHt-Xz9n69ell-bDOasZhn1nhS2DMypry2igsmaXSgPBQcASL1HvOqGDoJLWCK2VUZaajRGQoANiC3Bx6-xi-RzfsdRvGuJsmNRWF5KA4m6m7A1XHMAzRed3HpjPxRyPo2YSeTOjZhJ5MTHh-xE1XxcZ-ur_Wfx9-AfpOXQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586407430</pqid></control><display><type>article</type><title>Shock induced aerobreakup of a droplet</title><source>Cambridge University Press Journals</source><creator>Sharma, Shubham ; Pratap Singh, Awanish ; Srinivas Rao, S. ; Kumar, Aloke ; Basu, Saptarshi</creator><creatorcontrib>Sharma, Shubham ; Pratap Singh, Awanish ; Srinivas Rao, S. ; Kumar, Aloke ; Basu, Saptarshi</creatorcontrib><description>The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers $(We\sim 30\text{--}15\,000)$. A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers $(We\sim 800)$. For $We > 1000$, the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.860</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Air flow ; Atomizing ; Breakup ; Deformation ; Disintegration ; Droplets ; Dynamics ; Entrainment ; Equator ; JFM Papers ; Liquid sheets ; Modes ; Nucleation ; Reynolds number ; Shear ; Shock ; Simulation ; Surface waves ; Velocity ; Viscosity ; Wave dynamics</subject><ispartof>Journal of fluid mechanics, 2021-12, Vol.929, Article A27</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-d5f9033d6c24ca7193d26a05f08410d12ff432531e62d5477a7bad54911315003</citedby><cites>FETCH-LOGICAL-c340t-d5f9033d6c24ca7193d26a05f08410d12ff432531e62d5477a7bad54911315003</cites><orcidid>0000-0002-7797-8336 ; 0000-0002-9652-9966 ; 0000-0003-1374-8176 ; 0000-0002-8704-887X ; 0000-0003-1817-5207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021008600/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,315,781,785,27928,27929,55632</link.rule.ids></links><search><creatorcontrib>Sharma, Shubham</creatorcontrib><creatorcontrib>Pratap Singh, Awanish</creatorcontrib><creatorcontrib>Srinivas Rao, S.</creatorcontrib><creatorcontrib>Kumar, Aloke</creatorcontrib><creatorcontrib>Basu, Saptarshi</creatorcontrib><title>Shock induced aerobreakup of a droplet</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers $(We\sim 30\text{--}15\,000)$. A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers $(We\sim 800)$. For $We > 1000$, the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed.</description><subject>Air flow</subject><subject>Atomizing</subject><subject>Breakup</subject><subject>Deformation</subject><subject>Disintegration</subject><subject>Droplets</subject><subject>Dynamics</subject><subject>Entrainment</subject><subject>Equator</subject><subject>JFM Papers</subject><subject>Liquid sheets</subject><subject>Modes</subject><subject>Nucleation</subject><subject>Reynolds number</subject><subject>Shear</subject><subject>Shock</subject><subject>Simulation</subject><subject>Surface waves</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Wave dynamics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AURQdRMFZ3_oCA4MrE9-YzWUqxKhRcqOthkpnRpE0nTpqF_96EFty4um9x3r1wCLlGyBFQ3be-yylQzAsJJyRBLstMSS5OSQJAaYZI4ZxcDEMLgAxKlZDbt69Qb9JmZ8fa2dS4GKrozGbs0-BTk9oY-q3bX5Izb7aDuzrmgnysHt-Xz9n69ell-bDOasZhn1nhS2DMypry2igsmaXSgPBQcASL1HvOqGDoJLWCK2VUZaajRGQoANiC3Bx6-xi-RzfsdRvGuJsmNRWF5KA4m6m7A1XHMAzRed3HpjPxRyPo2YSeTOjZhJ5MTHh-xE1XxcZ-ur_Wfx9-AfpOXQQ</recordid><startdate>20211225</startdate><enddate>20211225</enddate><creator>Sharma, Shubham</creator><creator>Pratap Singh, Awanish</creator><creator>Srinivas Rao, S.</creator><creator>Kumar, Aloke</creator><creator>Basu, Saptarshi</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7797-8336</orcidid><orcidid>https://orcid.org/0000-0002-9652-9966</orcidid><orcidid>https://orcid.org/0000-0003-1374-8176</orcidid><orcidid>https://orcid.org/0000-0002-8704-887X</orcidid><orcidid>https://orcid.org/0000-0003-1817-5207</orcidid></search><sort><creationdate>20211225</creationdate><title>Shock induced aerobreakup of a droplet</title><author>Sharma, Shubham ; Pratap Singh, Awanish ; Srinivas Rao, S. ; Kumar, Aloke ; Basu, Saptarshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-d5f9033d6c24ca7193d26a05f08410d12ff432531e62d5477a7bad54911315003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air flow</topic><topic>Atomizing</topic><topic>Breakup</topic><topic>Deformation</topic><topic>Disintegration</topic><topic>Droplets</topic><topic>Dynamics</topic><topic>Entrainment</topic><topic>Equator</topic><topic>JFM Papers</topic><topic>Liquid sheets</topic><topic>Modes</topic><topic>Nucleation</topic><topic>Reynolds number</topic><topic>Shear</topic><topic>Shock</topic><topic>Simulation</topic><topic>Surface waves</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Wave dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Shubham</creatorcontrib><creatorcontrib>Pratap Singh, Awanish</creatorcontrib><creatorcontrib>Srinivas Rao, S.</creatorcontrib><creatorcontrib>Kumar, Aloke</creatorcontrib><creatorcontrib>Basu, Saptarshi</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Shubham</au><au>Pratap Singh, Awanish</au><au>Srinivas Rao, S.</au><au>Kumar, Aloke</au><au>Basu, Saptarshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock induced aerobreakup of a droplet</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-12-25</date><risdate>2021</risdate><volume>929</volume><artnum>A27</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers $(We\sim 30\text{--}15\,000)$. A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers $(We\sim 800)$. For $We > 1000$, the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.860</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-7797-8336</orcidid><orcidid>https://orcid.org/0000-0002-9652-9966</orcidid><orcidid>https://orcid.org/0000-0003-1374-8176</orcidid><orcidid>https://orcid.org/0000-0002-8704-887X</orcidid><orcidid>https://orcid.org/0000-0003-1817-5207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-12, Vol.929, Article A27 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_crossref_primary_10_1017_jfm_2021_860 |
source | Cambridge University Press Journals |
subjects | Air flow Atomizing Breakup Deformation Disintegration Droplets Dynamics Entrainment Equator JFM Papers Liquid sheets Modes Nucleation Reynolds number Shear Shock Simulation Surface waves Velocity Viscosity Wave dynamics |
title | Shock induced aerobreakup of a droplet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20induced%20aerobreakup%20of%20a%20droplet&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Sharma,%20Shubham&rft.date=2021-12-25&rft.volume=929&rft.artnum=A27&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.860&rft_dat=%3Cproquest_cross%3E2586407430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586407430&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_860&rfr_iscdi=true |