Shock induced aerobreakup of a droplet

The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-12, Vol.929, Article A27
Hauptverfasser: Sharma, Shubham, Pratap Singh, Awanish, Srinivas Rao, S., Kumar, Aloke, Basu, Saptarshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 929
creator Sharma, Shubham
Pratap Singh, Awanish
Srinivas Rao, S.
Kumar, Aloke
Basu, Saptarshi
description The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers $(We\sim 30\text{--}15\,000)$. A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers $(We\sim 800)$. For $We > 1000$, the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed.
doi_str_mv 10.1017/jfm.2021.860
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jfm_2021_860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_860</cupid><sourcerecordid>2586407430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-d5f9033d6c24ca7193d26a05f08410d12ff432531e62d5477a7bad54911315003</originalsourceid><addsrcrecordid>eNptkE1Lw0AURQdRMFZ3_oCA4MrE9-YzWUqxKhRcqOthkpnRpE0nTpqF_96EFty4um9x3r1wCLlGyBFQ3be-yylQzAsJJyRBLstMSS5OSQJAaYZI4ZxcDEMLgAxKlZDbt69Qb9JmZ8fa2dS4GKrozGbs0-BTk9oY-q3bX5Izb7aDuzrmgnysHt-Xz9n69ell-bDOasZhn1nhS2DMypry2igsmaXSgPBQcASL1HvOqGDoJLWCK2VUZaajRGQoANiC3Bx6-xi-RzfsdRvGuJsmNRWF5KA4m6m7A1XHMAzRed3HpjPxRyPo2YSeTOjZhJ5MTHh-xE1XxcZ-ur_Wfx9-AfpOXQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586407430</pqid></control><display><type>article</type><title>Shock induced aerobreakup of a droplet</title><source>Cambridge University Press Journals</source><creator>Sharma, Shubham ; Pratap Singh, Awanish ; Srinivas Rao, S. ; Kumar, Aloke ; Basu, Saptarshi</creator><creatorcontrib>Sharma, Shubham ; Pratap Singh, Awanish ; Srinivas Rao, S. ; Kumar, Aloke ; Basu, Saptarshi</creatorcontrib><description>The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers $(We\sim 30\text{--}15\,000)$. A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers $(We\sim 800)$. For $We &gt; 1000$, the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.860</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Air flow ; Atomizing ; Breakup ; Deformation ; Disintegration ; Droplets ; Dynamics ; Entrainment ; Equator ; JFM Papers ; Liquid sheets ; Modes ; Nucleation ; Reynolds number ; Shear ; Shock ; Simulation ; Surface waves ; Velocity ; Viscosity ; Wave dynamics</subject><ispartof>Journal of fluid mechanics, 2021-12, Vol.929, Article A27</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-d5f9033d6c24ca7193d26a05f08410d12ff432531e62d5477a7bad54911315003</citedby><cites>FETCH-LOGICAL-c340t-d5f9033d6c24ca7193d26a05f08410d12ff432531e62d5477a7bad54911315003</cites><orcidid>0000-0002-7797-8336 ; 0000-0002-9652-9966 ; 0000-0003-1374-8176 ; 0000-0002-8704-887X ; 0000-0003-1817-5207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021008600/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,315,781,785,27928,27929,55632</link.rule.ids></links><search><creatorcontrib>Sharma, Shubham</creatorcontrib><creatorcontrib>Pratap Singh, Awanish</creatorcontrib><creatorcontrib>Srinivas Rao, S.</creatorcontrib><creatorcontrib>Kumar, Aloke</creatorcontrib><creatorcontrib>Basu, Saptarshi</creatorcontrib><title>Shock induced aerobreakup of a droplet</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers $(We\sim 30\text{--}15\,000)$. A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers $(We\sim 800)$. For $We &gt; 1000$, the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed.</description><subject>Air flow</subject><subject>Atomizing</subject><subject>Breakup</subject><subject>Deformation</subject><subject>Disintegration</subject><subject>Droplets</subject><subject>Dynamics</subject><subject>Entrainment</subject><subject>Equator</subject><subject>JFM Papers</subject><subject>Liquid sheets</subject><subject>Modes</subject><subject>Nucleation</subject><subject>Reynolds number</subject><subject>Shear</subject><subject>Shock</subject><subject>Simulation</subject><subject>Surface waves</subject><subject>Velocity</subject><subject>Viscosity</subject><subject>Wave dynamics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AURQdRMFZ3_oCA4MrE9-YzWUqxKhRcqOthkpnRpE0nTpqF_96EFty4um9x3r1wCLlGyBFQ3be-yylQzAsJJyRBLstMSS5OSQJAaYZI4ZxcDEMLgAxKlZDbt69Qb9JmZ8fa2dS4GKrozGbs0-BTk9oY-q3bX5Izb7aDuzrmgnysHt-Xz9n69ell-bDOasZhn1nhS2DMypry2igsmaXSgPBQcASL1HvOqGDoJLWCK2VUZaajRGQoANiC3Bx6-xi-RzfsdRvGuJsmNRWF5KA4m6m7A1XHMAzRed3HpjPxRyPo2YSeTOjZhJ5MTHh-xE1XxcZ-ur_Wfx9-AfpOXQQ</recordid><startdate>20211225</startdate><enddate>20211225</enddate><creator>Sharma, Shubham</creator><creator>Pratap Singh, Awanish</creator><creator>Srinivas Rao, S.</creator><creator>Kumar, Aloke</creator><creator>Basu, Saptarshi</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7797-8336</orcidid><orcidid>https://orcid.org/0000-0002-9652-9966</orcidid><orcidid>https://orcid.org/0000-0003-1374-8176</orcidid><orcidid>https://orcid.org/0000-0002-8704-887X</orcidid><orcidid>https://orcid.org/0000-0003-1817-5207</orcidid></search><sort><creationdate>20211225</creationdate><title>Shock induced aerobreakup of a droplet</title><author>Sharma, Shubham ; Pratap Singh, Awanish ; Srinivas Rao, S. ; Kumar, Aloke ; Basu, Saptarshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-d5f9033d6c24ca7193d26a05f08410d12ff432531e62d5477a7bad54911315003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air flow</topic><topic>Atomizing</topic><topic>Breakup</topic><topic>Deformation</topic><topic>Disintegration</topic><topic>Droplets</topic><topic>Dynamics</topic><topic>Entrainment</topic><topic>Equator</topic><topic>JFM Papers</topic><topic>Liquid sheets</topic><topic>Modes</topic><topic>Nucleation</topic><topic>Reynolds number</topic><topic>Shear</topic><topic>Shock</topic><topic>Simulation</topic><topic>Surface waves</topic><topic>Velocity</topic><topic>Viscosity</topic><topic>Wave dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Shubham</creatorcontrib><creatorcontrib>Pratap Singh, Awanish</creatorcontrib><creatorcontrib>Srinivas Rao, S.</creatorcontrib><creatorcontrib>Kumar, Aloke</creatorcontrib><creatorcontrib>Basu, Saptarshi</creatorcontrib><collection>Cambridge Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Shubham</au><au>Pratap Singh, Awanish</au><au>Srinivas Rao, S.</au><au>Kumar, Aloke</au><au>Basu, Saptarshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock induced aerobreakup of a droplet</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-12-25</date><risdate>2021</risdate><volume>929</volume><artnum>A27</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers $(We\sim 30\text{--}15\,000)$. A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers $(We\sim 800)$. For $We &gt; 1000$, the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.860</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-7797-8336</orcidid><orcidid>https://orcid.org/0000-0002-9652-9966</orcidid><orcidid>https://orcid.org/0000-0003-1374-8176</orcidid><orcidid>https://orcid.org/0000-0002-8704-887X</orcidid><orcidid>https://orcid.org/0000-0003-1817-5207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2021-12, Vol.929, Article A27
issn 0022-1120
1469-7645
language eng
recordid cdi_crossref_primary_10_1017_jfm_2021_860
source Cambridge University Press Journals
subjects Air flow
Atomizing
Breakup
Deformation
Disintegration
Droplets
Dynamics
Entrainment
Equator
JFM Papers
Liquid sheets
Modes
Nucleation
Reynolds number
Shear
Shock
Simulation
Surface waves
Velocity
Viscosity
Wave dynamics
title Shock induced aerobreakup of a droplet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20induced%20aerobreakup%20of%20a%20droplet&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Sharma,%20Shubham&rft.date=2021-12-25&rft.volume=929&rft.artnum=A27&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.860&rft_dat=%3Cproquest_cross%3E2586407430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586407430&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_860&rfr_iscdi=true