Alignment statistics of rods with the Lagrangian stretching direction in a channel flow
In homogeneous isotropic turbulence, slender rods are known to align with the Lagrangian stretching direction. However, how the degree of alignment depends on the aspect ratio of the rod is not understood. Moreover, particle-laden flows are often anisotropic and inhomogeneous. Therefore we study the...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-10, Vol.901, Article 16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 901 |
creator | Cui, Z. Dubey, A. Zhao, L. Mehlig, B. |
description | In homogeneous isotropic turbulence, slender rods are known to align with the Lagrangian stretching direction. However, how the degree of alignment depends on the aspect ratio of the rod is not understood. Moreover, particle-laden flows are often anisotropic and inhomogeneous. Therefore we study the alignment of rods with the Lagrangian stretching direction in a channel flow, which is approximately homogeneous and isotropic near the centre but inhomogeneous and anisotropic near the walls. Our main question is how the distribution of relative angles between a rod and the Lagrangian stretching direction depends on the aspect ratio of the rod and upon the distance of the rod from the channel wall. We find that this distribution exhibits two regimes: a plateau at small angles corresponding to random uncorrelated motion, and power-law tails due to large excursions. We find that slender rods near the channel centre align better with the Lagrangian stretching direction compared with those near the channel wall. These observations are explained in terms of simple statistical models based on Jeffery's equation, qualitatively near the channel centre and quantitatively near the channel wall. Lastly we discuss the consequences of our results for the distribution of relative angles between the orientations of nearby rods (Zhao et al., Phys. Rev. Fluids, vol. 4, 2019, 054602). |
doi_str_mv | 10.1017/jfm.2020.547 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jfm_2020_547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_547</cupid><sourcerecordid>2436763891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ce46c7061ab38840b5848c6b9187d593ec4aa0f5a961fc072235248b6c7d8ae13</originalsourceid><addsrcrecordid>eNqNkUGLFDEQhYMoOK7e_AEBj9pjJZ1O0sdlcFUY8KJ4DOl0dU-GmWRM0gz-e9PMsl48eKqi-N7j8YqQtwy2DJj6eJzOWw4ctp1Qz8iGCdk3SoruOdkAcN4wxuEleZXzEYC10KsN-Xl_8nM4Yyg0F1t8Lt5lGiea4pjp1ZcDLQekezsnG2ZvQ8USFnfwYaajT-iKj4H6QC11BxsCnuh0itfX5MVkTxnfPM478uPh0_fdl2b_7fPX3f2-ca2A0jgU0imQzA6t1gKGTgvt5NAzrcaub9EJa2HqbC_Z5EBx3nZc6KGKRm2RtXekufnmK16WwVySP9v020TrzbxcTD3Ni8loeK-EWPl3N_6S4q8FczHHuKRQIxouWqlkq_uV-nCjXIo5J5yefBmYtWpTqzZr1aZWXfH3N_yKQ5yy8xgcPkkAoJNccK7rBqu5_n9659evxLCLSyhVun3MZc9D8uOMf-P_M9kf2kShqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436763891</pqid></control><display><type>article</type><title>Alignment statistics of rods with the Lagrangian stretching direction in a channel flow</title><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Cambridge University Press Journals Complete</source><creator>Cui, Z. ; Dubey, A. ; Zhao, L. ; Mehlig, B.</creator><creatorcontrib>Cui, Z. ; Dubey, A. ; Zhao, L. ; Mehlig, B.</creatorcontrib><description>In homogeneous isotropic turbulence, slender rods are known to align with the Lagrangian stretching direction. However, how the degree of alignment depends on the aspect ratio of the rod is not understood. Moreover, particle-laden flows are often anisotropic and inhomogeneous. Therefore we study the alignment of rods with the Lagrangian stretching direction in a channel flow, which is approximately homogeneous and isotropic near the centre but inhomogeneous and anisotropic near the walls. Our main question is how the distribution of relative angles between a rod and the Lagrangian stretching direction depends on the aspect ratio of the rod and upon the distance of the rod from the channel wall. We find that this distribution exhibits two regimes: a plateau at small angles corresponding to random uncorrelated motion, and power-law tails due to large excursions. We find that slender rods near the channel centre align better with the Lagrangian stretching direction compared with those near the channel wall. These observations are explained in terms of simple statistical models based on Jeffery's equation, qualitatively near the channel centre and quantitatively near the channel wall. Lastly we discuss the consequences of our results for the distribution of relative angles between the orientations of nearby rods (Zhao et al., Phys. Rev. Fluids, vol. 4, 2019, 054602).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.547</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Alignment ; Anisotropy ; Aspect ratio ; Bacteria ; Channel flow ; Computational fluid dynamics ; Direction ; Distribution ; dynamics ; ellipsoidal particles ; Fluid flow ; Fluid mechanics ; Fluids ; Fysik ; Isotropic turbulence ; JFM Papers ; Laboratories ; Mathematical models ; Mechanics ; motion ; particle/fluid flow ; Physical Sciences ; Physics ; Physics, Fluids & Plasmas ; Rods ; Science & Technology ; Statistical analysis ; Statistical methods ; Statistical models ; Stretching ; Symmetry ; Technology ; Turbulence ; turbulence simulation ; Velocity</subject><ispartof>Journal of fluid mechanics, 2020-10, Vol.901, Article 16</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000562422800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c340t-ce46c7061ab38840b5848c6b9187d593ec4aa0f5a961fc072235248b6c7d8ae13</citedby><cites>FETCH-LOGICAL-c340t-ce46c7061ab38840b5848c6b9187d593ec4aa0f5a961fc072235248b6c7d8ae13</cites><orcidid>0000-0002-3672-6538 ; 0000-0002-6544-1830 ; 0000-0001-5779-1163 ; 0000-0002-3642-3051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020005479/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,315,782,786,887,27931,27932,28255,55635</link.rule.ids><backlink>$$Uhttps://gup.ub.gu.se/publication/297441$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Z.</creatorcontrib><creatorcontrib>Dubey, A.</creatorcontrib><creatorcontrib>Zhao, L.</creatorcontrib><creatorcontrib>Mehlig, B.</creatorcontrib><title>Alignment statistics of rods with the Lagrangian stretching direction in a channel flow</title><title>Journal of fluid mechanics</title><addtitle>J FLUID MECH</addtitle><addtitle>J. Fluid Mech</addtitle><description>In homogeneous isotropic turbulence, slender rods are known to align with the Lagrangian stretching direction. However, how the degree of alignment depends on the aspect ratio of the rod is not understood. Moreover, particle-laden flows are often anisotropic and inhomogeneous. Therefore we study the alignment of rods with the Lagrangian stretching direction in a channel flow, which is approximately homogeneous and isotropic near the centre but inhomogeneous and anisotropic near the walls. Our main question is how the distribution of relative angles between a rod and the Lagrangian stretching direction depends on the aspect ratio of the rod and upon the distance of the rod from the channel wall. We find that this distribution exhibits two regimes: a plateau at small angles corresponding to random uncorrelated motion, and power-law tails due to large excursions. We find that slender rods near the channel centre align better with the Lagrangian stretching direction compared with those near the channel wall. These observations are explained in terms of simple statistical models based on Jeffery's equation, qualitatively near the channel centre and quantitatively near the channel wall. Lastly we discuss the consequences of our results for the distribution of relative angles between the orientations of nearby rods (Zhao et al., Phys. Rev. Fluids, vol. 4, 2019, 054602).</description><subject>Alignment</subject><subject>Anisotropy</subject><subject>Aspect ratio</subject><subject>Bacteria</subject><subject>Channel flow</subject><subject>Computational fluid dynamics</subject><subject>Direction</subject><subject>Distribution</subject><subject>dynamics</subject><subject>ellipsoidal particles</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Fysik</subject><subject>Isotropic turbulence</subject><subject>JFM Papers</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>motion</subject><subject>particle/fluid flow</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Fluids & Plasmas</subject><subject>Rods</subject><subject>Science & Technology</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Stretching</subject><subject>Symmetry</subject><subject>Technology</subject><subject>Turbulence</subject><subject>turbulence simulation</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUGLFDEQhYMoOK7e_AEBj9pjJZ1O0sdlcFUY8KJ4DOl0dU-GmWRM0gz-e9PMsl48eKqi-N7j8YqQtwy2DJj6eJzOWw4ctp1Qz8iGCdk3SoruOdkAcN4wxuEleZXzEYC10KsN-Xl_8nM4Yyg0F1t8Lt5lGiea4pjp1ZcDLQekezsnG2ZvQ8USFnfwYaajT-iKj4H6QC11BxsCnuh0itfX5MVkTxnfPM478uPh0_fdl2b_7fPX3f2-ca2A0jgU0imQzA6t1gKGTgvt5NAzrcaub9EJa2HqbC_Z5EBx3nZc6KGKRm2RtXekufnmK16WwVySP9v020TrzbxcTD3Ni8loeK-EWPl3N_6S4q8FczHHuKRQIxouWqlkq_uV-nCjXIo5J5yefBmYtWpTqzZr1aZWXfH3N_yKQ5yy8xgcPkkAoJNccK7rBqu5_n9659evxLCLSyhVun3MZc9D8uOMf-P_M9kf2kShqA</recordid><startdate>20201025</startdate><enddate>20201025</enddate><creator>Cui, Z.</creator><creator>Dubey, A.</creator><creator>Zhao, L.</creator><creator>Mehlig, B.</creator><general>Cambridge University Press</general><general>Cambridge Univ Press</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0002-3672-6538</orcidid><orcidid>https://orcid.org/0000-0002-6544-1830</orcidid><orcidid>https://orcid.org/0000-0001-5779-1163</orcidid><orcidid>https://orcid.org/0000-0002-3642-3051</orcidid></search><sort><creationdate>20201025</creationdate><title>Alignment statistics of rods with the Lagrangian stretching direction in a channel flow</title><author>Cui, Z. ; Dubey, A. ; Zhao, L. ; Mehlig, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ce46c7061ab38840b5848c6b9187d593ec4aa0f5a961fc072235248b6c7d8ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alignment</topic><topic>Anisotropy</topic><topic>Aspect ratio</topic><topic>Bacteria</topic><topic>Channel flow</topic><topic>Computational fluid dynamics</topic><topic>Direction</topic><topic>Distribution</topic><topic>dynamics</topic><topic>ellipsoidal particles</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Fysik</topic><topic>Isotropic turbulence</topic><topic>JFM Papers</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>motion</topic><topic>particle/fluid flow</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Fluids & Plasmas</topic><topic>Rods</topic><topic>Science & Technology</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Stretching</topic><topic>Symmetry</topic><topic>Technology</topic><topic>Turbulence</topic><topic>turbulence simulation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Z.</creatorcontrib><creatorcontrib>Dubey, A.</creatorcontrib><creatorcontrib>Zhao, L.</creatorcontrib><creatorcontrib>Mehlig, B.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Z.</au><au>Dubey, A.</au><au>Zhao, L.</au><au>Mehlig, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alignment statistics of rods with the Lagrangian stretching direction in a channel flow</atitle><jtitle>Journal of fluid mechanics</jtitle><stitle>J FLUID MECH</stitle><addtitle>J. Fluid Mech</addtitle><date>2020-10-25</date><risdate>2020</risdate><volume>901</volume><artnum>16</artnum><artnum>A16</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In homogeneous isotropic turbulence, slender rods are known to align with the Lagrangian stretching direction. However, how the degree of alignment depends on the aspect ratio of the rod is not understood. Moreover, particle-laden flows are often anisotropic and inhomogeneous. Therefore we study the alignment of rods with the Lagrangian stretching direction in a channel flow, which is approximately homogeneous and isotropic near the centre but inhomogeneous and anisotropic near the walls. Our main question is how the distribution of relative angles between a rod and the Lagrangian stretching direction depends on the aspect ratio of the rod and upon the distance of the rod from the channel wall. We find that this distribution exhibits two regimes: a plateau at small angles corresponding to random uncorrelated motion, and power-law tails due to large excursions. We find that slender rods near the channel centre align better with the Lagrangian stretching direction compared with those near the channel wall. These observations are explained in terms of simple statistical models based on Jeffery's equation, qualitatively near the channel centre and quantitatively near the channel wall. Lastly we discuss the consequences of our results for the distribution of relative angles between the orientations of nearby rods (Zhao et al., Phys. Rev. Fluids, vol. 4, 2019, 054602).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.547</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3672-6538</orcidid><orcidid>https://orcid.org/0000-0002-6544-1830</orcidid><orcidid>https://orcid.org/0000-0001-5779-1163</orcidid><orcidid>https://orcid.org/0000-0002-3642-3051</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-10, Vol.901, Article 16 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_crossref_primary_10_1017_jfm_2020_547 |
source | Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Cambridge University Press Journals Complete |
subjects | Alignment Anisotropy Aspect ratio Bacteria Channel flow Computational fluid dynamics Direction Distribution dynamics ellipsoidal particles Fluid flow Fluid mechanics Fluids Fysik Isotropic turbulence JFM Papers Laboratories Mathematical models Mechanics motion particle/fluid flow Physical Sciences Physics Physics, Fluids & Plasmas Rods Science & Technology Statistical analysis Statistical methods Statistical models Stretching Symmetry Technology Turbulence turbulence simulation Velocity |
title | Alignment statistics of rods with the Lagrangian stretching direction in a channel flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T14%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alignment%20statistics%20of%20rods%20with%20the%20Lagrangian%20stretching%20direction%20in%20a%20channel%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Cui,%20Z.&rft.date=2020-10-25&rft.volume=901&rft.artnum=16&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.547&rft_dat=%3Cproquest_cross%3E2436763891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436763891&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_547&rfr_iscdi=true |