Direct numerical simulations of turbulent viscoelastic jets

Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2020-09, Vol.899, Article A11
Hauptverfasser: Guimarães, Mateus C., Pimentel, Nuno, Pinho, Fernando T., da Silva, Carlos B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 899
creator Guimarães, Mateus C.
Pimentel, Nuno
Pinho, Fernando T.
da Silva, Carlos B.
description Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulent jets of viscoelastic fluids. New evolution relations for the jet shear-layer thickness $\unicode[STIX]{x1D6FF}(x)$, centreline velocity $U_{c}(x)$ and maximum polymer stresses $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)$ are derived and validated by the new DNS data, yielding $\unicode[STIX]{x1D6FF}(x)\sim x$, $U_{c}(x)\sim x^{-1/2}$, and $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)\sim x^{-5/2}$, respectively, where $x$ is the coordinate in the streamwise direction. It is shown that, compared with a classical (Newtonian) turbulent jet, the effect of the polymers is to reduce the spreading rate, centreline velocity decay, Reynolds stresses and viscous dissipation rate. The self-preserving character of the flow is analysed and it is shown that profiles of mean velocity, Reynolds stresses and polymer stresses are self-similar provided the proper scales are used in the normalisation of these quantities. A fundamental difference from the Newtonian jet in this regard is the necessity for two, instead of only one, different velocity and length scales to properly characterise the evolution of the turbulent flow. These extra velocity and length scales are directly related to a time scale associated with the characteristic fading memory property of viscoelastic fluids.
doi_str_mv 10.1017/jfm.2020.402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jfm_2020_402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_402</cupid><sourcerecordid>2424882255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-1efa569964f91cf844ae9c0bbc64b4116117104563fb6dc6c2b44ee97579bdaa3</originalsourceid><addsrcrecordid>eNptkM1KxDAYRYMoOI7ufICCW1u_L02TCa7Efxhwo-uQZBJJ6c-YpIJvb4cZcOPqbs69Fw4hlwgVAoqb1vcVBQoVA3pEFsi4LAVnzTFZAFBaIlI4JWcptQBYgxQLcvsQorO5GKbexWB1V6TQT53OYRxSMfoiT9FMnRty8R2SHV2nUw62aF1O5-TE6y65i0MuycfT4_v9S7l-e369v1uXthY0l-i8briUnHmJ1q8Y005aMMZyZhgiRxQIrOG1N3xjuaWGMeekaIQ0G63rJbna727j-DW5lFU7TnGYLxVllK1WlDbNTF3vKRvHlKLzahtDr-OPQlA7PWrWo3Z61KxnxqsDrnsTw-bT_a3-W_gFpVhnUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424882255</pqid></control><display><type>article</type><title>Direct numerical simulations of turbulent viscoelastic jets</title><source>Cambridge University Press Journals Complete</source><creator>Guimarães, Mateus C. ; Pimentel, Nuno ; Pinho, Fernando T. ; da Silva, Carlos B.</creator><creatorcontrib>Guimarães, Mateus C. ; Pimentel, Nuno ; Pinho, Fernando T. ; da Silva, Carlos B.</creatorcontrib><description>Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulent jets of viscoelastic fluids. New evolution relations for the jet shear-layer thickness $\unicode[STIX]{x1D6FF}(x)$, centreline velocity $U_{c}(x)$ and maximum polymer stresses $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)$ are derived and validated by the new DNS data, yielding $\unicode[STIX]{x1D6FF}(x)\sim x$, $U_{c}(x)\sim x^{-1/2}$, and $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)\sim x^{-5/2}$, respectively, where $x$ is the coordinate in the streamwise direction. It is shown that, compared with a classical (Newtonian) turbulent jet, the effect of the polymers is to reduce the spreading rate, centreline velocity decay, Reynolds stresses and viscous dissipation rate. The self-preserving character of the flow is analysed and it is shown that profiles of mean velocity, Reynolds stresses and polymer stresses are self-similar provided the proper scales are used in the normalisation of these quantities. A fundamental difference from the Newtonian jet in this regard is the necessity for two, instead of only one, different velocity and length scales to properly characterise the evolution of the turbulent flow. These extra velocity and length scales are directly related to a time scale associated with the characteristic fading memory property of viscoelastic fluids.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.402</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aquatic reptiles ; Computational fluid dynamics ; Computer simulation ; Decay rate ; Evolution ; Fluid flow ; Fluids ; Jets ; JFM Papers ; Kinematics ; Length ; Mathematical models ; Newtonian fluids ; Polymers ; Profiles ; Reynolds stresses ; Rheology ; Seafloor spreading ; Self-similarity ; Shear layers ; Simulation ; Solvents ; Stresses ; Theory ; Thickness ; Turbulent flow ; Turbulent jets ; Velocity ; Viscoelastic fluids ; Viscoelasticity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2020-09, Vol.899, Article A11</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-1efa569964f91cf844ae9c0bbc64b4116117104563fb6dc6c2b44ee97579bdaa3</citedby><cites>FETCH-LOGICAL-c372t-1efa569964f91cf844ae9c0bbc64b4116117104563fb6dc6c2b44ee97579bdaa3</cites><orcidid>0000-0001-6268-3968 ; 0000-0002-6866-5469 ; 0000-0002-9576-4622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020004024/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Guimarães, Mateus C.</creatorcontrib><creatorcontrib>Pimentel, Nuno</creatorcontrib><creatorcontrib>Pinho, Fernando T.</creatorcontrib><creatorcontrib>da Silva, Carlos B.</creatorcontrib><title>Direct numerical simulations of turbulent viscoelastic jets</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulent jets of viscoelastic fluids. New evolution relations for the jet shear-layer thickness $\unicode[STIX]{x1D6FF}(x)$, centreline velocity $U_{c}(x)$ and maximum polymer stresses $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)$ are derived and validated by the new DNS data, yielding $\unicode[STIX]{x1D6FF}(x)\sim x$, $U_{c}(x)\sim x^{-1/2}$, and $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)\sim x^{-5/2}$, respectively, where $x$ is the coordinate in the streamwise direction. It is shown that, compared with a classical (Newtonian) turbulent jet, the effect of the polymers is to reduce the spreading rate, centreline velocity decay, Reynolds stresses and viscous dissipation rate. The self-preserving character of the flow is analysed and it is shown that profiles of mean velocity, Reynolds stresses and polymer stresses are self-similar provided the proper scales are used in the normalisation of these quantities. A fundamental difference from the Newtonian jet in this regard is the necessity for two, instead of only one, different velocity and length scales to properly characterise the evolution of the turbulent flow. These extra velocity and length scales are directly related to a time scale associated with the characteristic fading memory property of viscoelastic fluids.</description><subject>Aquatic reptiles</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Decay rate</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Jets</subject><subject>JFM Papers</subject><subject>Kinematics</subject><subject>Length</subject><subject>Mathematical models</subject><subject>Newtonian fluids</subject><subject>Polymers</subject><subject>Profiles</subject><subject>Reynolds stresses</subject><subject>Rheology</subject><subject>Seafloor spreading</subject><subject>Self-similarity</subject><subject>Shear layers</subject><subject>Simulation</subject><subject>Solvents</subject><subject>Stresses</subject><subject>Theory</subject><subject>Thickness</subject><subject>Turbulent flow</subject><subject>Turbulent jets</subject><subject>Velocity</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM1KxDAYRYMoOI7ufICCW1u_L02TCa7Efxhwo-uQZBJJ6c-YpIJvb4cZcOPqbs69Fw4hlwgVAoqb1vcVBQoVA3pEFsi4LAVnzTFZAFBaIlI4JWcptQBYgxQLcvsQorO5GKbexWB1V6TQT53OYRxSMfoiT9FMnRty8R2SHV2nUw62aF1O5-TE6y65i0MuycfT4_v9S7l-e369v1uXthY0l-i8briUnHmJ1q8Y005aMMZyZhgiRxQIrOG1N3xjuaWGMeekaIQ0G63rJbna727j-DW5lFU7TnGYLxVllK1WlDbNTF3vKRvHlKLzahtDr-OPQlA7PWrWo3Z61KxnxqsDrnsTw-bT_a3-W_gFpVhnUQ</recordid><startdate>20200925</startdate><enddate>20200925</enddate><creator>Guimarães, Mateus C.</creator><creator>Pimentel, Nuno</creator><creator>Pinho, Fernando T.</creator><creator>da Silva, Carlos B.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-6268-3968</orcidid><orcidid>https://orcid.org/0000-0002-6866-5469</orcidid><orcidid>https://orcid.org/0000-0002-9576-4622</orcidid></search><sort><creationdate>20200925</creationdate><title>Direct numerical simulations of turbulent viscoelastic jets</title><author>Guimarães, Mateus C. ; Pimentel, Nuno ; Pinho, Fernando T. ; da Silva, Carlos B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-1efa569964f91cf844ae9c0bbc64b4116117104563fb6dc6c2b44ee97579bdaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic reptiles</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Decay rate</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Jets</topic><topic>JFM Papers</topic><topic>Kinematics</topic><topic>Length</topic><topic>Mathematical models</topic><topic>Newtonian fluids</topic><topic>Polymers</topic><topic>Profiles</topic><topic>Reynolds stresses</topic><topic>Rheology</topic><topic>Seafloor spreading</topic><topic>Self-similarity</topic><topic>Shear layers</topic><topic>Simulation</topic><topic>Solvents</topic><topic>Stresses</topic><topic>Theory</topic><topic>Thickness</topic><topic>Turbulent flow</topic><topic>Turbulent jets</topic><topic>Velocity</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarães, Mateus C.</creatorcontrib><creatorcontrib>Pimentel, Nuno</creatorcontrib><creatorcontrib>Pinho, Fernando T.</creatorcontrib><creatorcontrib>da Silva, Carlos B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarães, Mateus C.</au><au>Pimentel, Nuno</au><au>Pinho, Fernando T.</au><au>da Silva, Carlos B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct numerical simulations of turbulent viscoelastic jets</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2020-09-25</date><risdate>2020</risdate><volume>899</volume><artnum>A11</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulent jets of viscoelastic fluids. New evolution relations for the jet shear-layer thickness $\unicode[STIX]{x1D6FF}(x)$, centreline velocity $U_{c}(x)$ and maximum polymer stresses $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)$ are derived and validated by the new DNS data, yielding $\unicode[STIX]{x1D6FF}(x)\sim x$, $U_{c}(x)\sim x^{-1/2}$, and $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)\sim x^{-5/2}$, respectively, where $x$ is the coordinate in the streamwise direction. It is shown that, compared with a classical (Newtonian) turbulent jet, the effect of the polymers is to reduce the spreading rate, centreline velocity decay, Reynolds stresses and viscous dissipation rate. The self-preserving character of the flow is analysed and it is shown that profiles of mean velocity, Reynolds stresses and polymer stresses are self-similar provided the proper scales are used in the normalisation of these quantities. A fundamental difference from the Newtonian jet in this regard is the necessity for two, instead of only one, different velocity and length scales to properly characterise the evolution of the turbulent flow. These extra velocity and length scales are directly related to a time scale associated with the characteristic fading memory property of viscoelastic fluids.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.402</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-6268-3968</orcidid><orcidid>https://orcid.org/0000-0002-6866-5469</orcidid><orcidid>https://orcid.org/0000-0002-9576-4622</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2020-09, Vol.899, Article A11
issn 0022-1120
1469-7645
language eng
recordid cdi_crossref_primary_10_1017_jfm_2020_402
source Cambridge University Press Journals Complete
subjects Aquatic reptiles
Computational fluid dynamics
Computer simulation
Decay rate
Evolution
Fluid flow
Fluids
Jets
JFM Papers
Kinematics
Length
Mathematical models
Newtonian fluids
Polymers
Profiles
Reynolds stresses
Rheology
Seafloor spreading
Self-similarity
Shear layers
Simulation
Solvents
Stresses
Theory
Thickness
Turbulent flow
Turbulent jets
Velocity
Viscoelastic fluids
Viscoelasticity
Viscosity
title Direct numerical simulations of turbulent viscoelastic jets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20numerical%20simulations%20of%20turbulent%20viscoelastic%20jets&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Guimar%C3%A3es,%20Mateus%20C.&rft.date=2020-09-25&rft.volume=899&rft.artnum=A11&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.402&rft_dat=%3Cproquest_cross%3E2424882255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424882255&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_402&rfr_iscdi=true