Direct numerical simulations of turbulent viscoelastic jets
Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulen...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2020-09, Vol.899, Article A11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 899 |
creator | Guimarães, Mateus C. Pimentel, Nuno Pinho, Fernando T. da Silva, Carlos B. |
description | Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulent jets of viscoelastic fluids. New evolution relations for the jet shear-layer thickness $\unicode[STIX]{x1D6FF}(x)$, centreline velocity $U_{c}(x)$ and maximum polymer stresses $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)$ are derived and validated by the new DNS data, yielding $\unicode[STIX]{x1D6FF}(x)\sim x$, $U_{c}(x)\sim x^{-1/2}$, and $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)\sim x^{-5/2}$, respectively, where $x$ is the coordinate in the streamwise direction. It is shown that, compared with a classical (Newtonian) turbulent jet, the effect of the polymers is to reduce the spreading rate, centreline velocity decay, Reynolds stresses and viscous dissipation rate. The self-preserving character of the flow is analysed and it is shown that profiles of mean velocity, Reynolds stresses and polymer stresses are self-similar provided the proper scales are used in the normalisation of these quantities. A fundamental difference from the Newtonian jet in this regard is the necessity for two, instead of only one, different velocity and length scales to properly characterise the evolution of the turbulent flow. These extra velocity and length scales are directly related to a time scale associated with the characteristic fading memory property of viscoelastic fluids. |
doi_str_mv | 10.1017/jfm.2020.402 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_jfm_2020_402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2020_402</cupid><sourcerecordid>2424882255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-1efa569964f91cf844ae9c0bbc64b4116117104563fb6dc6c2b44ee97579bdaa3</originalsourceid><addsrcrecordid>eNptkM1KxDAYRYMoOI7ufICCW1u_L02TCa7Efxhwo-uQZBJJ6c-YpIJvb4cZcOPqbs69Fw4hlwgVAoqb1vcVBQoVA3pEFsi4LAVnzTFZAFBaIlI4JWcptQBYgxQLcvsQorO5GKbexWB1V6TQT53OYRxSMfoiT9FMnRty8R2SHV2nUw62aF1O5-TE6y65i0MuycfT4_v9S7l-e369v1uXthY0l-i8briUnHmJ1q8Y005aMMZyZhgiRxQIrOG1N3xjuaWGMeekaIQ0G63rJbna727j-DW5lFU7TnGYLxVllK1WlDbNTF3vKRvHlKLzahtDr-OPQlA7PWrWo3Z61KxnxqsDrnsTw-bT_a3-W_gFpVhnUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424882255</pqid></control><display><type>article</type><title>Direct numerical simulations of turbulent viscoelastic jets</title><source>Cambridge University Press Journals Complete</source><creator>Guimarães, Mateus C. ; Pimentel, Nuno ; Pinho, Fernando T. ; da Silva, Carlos B.</creator><creatorcontrib>Guimarães, Mateus C. ; Pimentel, Nuno ; Pinho, Fernando T. ; da Silva, Carlos B.</creatorcontrib><description>Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulent jets of viscoelastic fluids. New evolution relations for the jet shear-layer thickness $\unicode[STIX]{x1D6FF}(x)$, centreline velocity $U_{c}(x)$ and maximum polymer stresses $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)$ are derived and validated by the new DNS data, yielding $\unicode[STIX]{x1D6FF}(x)\sim x$, $U_{c}(x)\sim x^{-1/2}$, and $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)\sim x^{-5/2}$, respectively, where $x$ is the coordinate in the streamwise direction. It is shown that, compared with a classical (Newtonian) turbulent jet, the effect of the polymers is to reduce the spreading rate, centreline velocity decay, Reynolds stresses and viscous dissipation rate. The self-preserving character of the flow is analysed and it is shown that profiles of mean velocity, Reynolds stresses and polymer stresses are self-similar provided the proper scales are used in the normalisation of these quantities. A fundamental difference from the Newtonian jet in this regard is the necessity for two, instead of only one, different velocity and length scales to properly characterise the evolution of the turbulent flow. These extra velocity and length scales are directly related to a time scale associated with the characteristic fading memory property of viscoelastic fluids.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2020.402</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aquatic reptiles ; Computational fluid dynamics ; Computer simulation ; Decay rate ; Evolution ; Fluid flow ; Fluids ; Jets ; JFM Papers ; Kinematics ; Length ; Mathematical models ; Newtonian fluids ; Polymers ; Profiles ; Reynolds stresses ; Rheology ; Seafloor spreading ; Self-similarity ; Shear layers ; Simulation ; Solvents ; Stresses ; Theory ; Thickness ; Turbulent flow ; Turbulent jets ; Velocity ; Viscoelastic fluids ; Viscoelasticity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2020-09, Vol.899, Article A11</ispartof><rights>The Author(s), 2020. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-1efa569964f91cf844ae9c0bbc64b4116117104563fb6dc6c2b44ee97579bdaa3</citedby><cites>FETCH-LOGICAL-c372t-1efa569964f91cf844ae9c0bbc64b4116117104563fb6dc6c2b44ee97579bdaa3</cites><orcidid>0000-0001-6268-3968 ; 0000-0002-6866-5469 ; 0000-0002-9576-4622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112020004024/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Guimarães, Mateus C.</creatorcontrib><creatorcontrib>Pimentel, Nuno</creatorcontrib><creatorcontrib>Pinho, Fernando T.</creatorcontrib><creatorcontrib>da Silva, Carlos B.</creatorcontrib><title>Direct numerical simulations of turbulent viscoelastic jets</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulent jets of viscoelastic fluids. New evolution relations for the jet shear-layer thickness $\unicode[STIX]{x1D6FF}(x)$, centreline velocity $U_{c}(x)$ and maximum polymer stresses $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)$ are derived and validated by the new DNS data, yielding $\unicode[STIX]{x1D6FF}(x)\sim x$, $U_{c}(x)\sim x^{-1/2}$, and $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)\sim x^{-5/2}$, respectively, where $x$ is the coordinate in the streamwise direction. It is shown that, compared with a classical (Newtonian) turbulent jet, the effect of the polymers is to reduce the spreading rate, centreline velocity decay, Reynolds stresses and viscous dissipation rate. The self-preserving character of the flow is analysed and it is shown that profiles of mean velocity, Reynolds stresses and polymer stresses are self-similar provided the proper scales are used in the normalisation of these quantities. A fundamental difference from the Newtonian jet in this regard is the necessity for two, instead of only one, different velocity and length scales to properly characterise the evolution of the turbulent flow. These extra velocity and length scales are directly related to a time scale associated with the characteristic fading memory property of viscoelastic fluids.</description><subject>Aquatic reptiles</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Decay rate</subject><subject>Evolution</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Jets</subject><subject>JFM Papers</subject><subject>Kinematics</subject><subject>Length</subject><subject>Mathematical models</subject><subject>Newtonian fluids</subject><subject>Polymers</subject><subject>Profiles</subject><subject>Reynolds stresses</subject><subject>Rheology</subject><subject>Seafloor spreading</subject><subject>Self-similarity</subject><subject>Shear layers</subject><subject>Simulation</subject><subject>Solvents</subject><subject>Stresses</subject><subject>Theory</subject><subject>Thickness</subject><subject>Turbulent flow</subject><subject>Turbulent jets</subject><subject>Velocity</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM1KxDAYRYMoOI7ufICCW1u_L02TCa7Efxhwo-uQZBJJ6c-YpIJvb4cZcOPqbs69Fw4hlwgVAoqb1vcVBQoVA3pEFsi4LAVnzTFZAFBaIlI4JWcptQBYgxQLcvsQorO5GKbexWB1V6TQT53OYRxSMfoiT9FMnRty8R2SHV2nUw62aF1O5-TE6y65i0MuycfT4_v9S7l-e369v1uXthY0l-i8briUnHmJ1q8Y005aMMZyZhgiRxQIrOG1N3xjuaWGMeekaIQ0G63rJbna727j-DW5lFU7TnGYLxVllK1WlDbNTF3vKRvHlKLzahtDr-OPQlA7PWrWo3Z61KxnxqsDrnsTw-bT_a3-W_gFpVhnUQ</recordid><startdate>20200925</startdate><enddate>20200925</enddate><creator>Guimarães, Mateus C.</creator><creator>Pimentel, Nuno</creator><creator>Pinho, Fernando T.</creator><creator>da Silva, Carlos B.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-6268-3968</orcidid><orcidid>https://orcid.org/0000-0002-6866-5469</orcidid><orcidid>https://orcid.org/0000-0002-9576-4622</orcidid></search><sort><creationdate>20200925</creationdate><title>Direct numerical simulations of turbulent viscoelastic jets</title><author>Guimarães, Mateus C. ; Pimentel, Nuno ; Pinho, Fernando T. ; da Silva, Carlos B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-1efa569964f91cf844ae9c0bbc64b4116117104563fb6dc6c2b44ee97579bdaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic reptiles</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Decay rate</topic><topic>Evolution</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Jets</topic><topic>JFM Papers</topic><topic>Kinematics</topic><topic>Length</topic><topic>Mathematical models</topic><topic>Newtonian fluids</topic><topic>Polymers</topic><topic>Profiles</topic><topic>Reynolds stresses</topic><topic>Rheology</topic><topic>Seafloor spreading</topic><topic>Self-similarity</topic><topic>Shear layers</topic><topic>Simulation</topic><topic>Solvents</topic><topic>Stresses</topic><topic>Theory</topic><topic>Thickness</topic><topic>Turbulent flow</topic><topic>Turbulent jets</topic><topic>Velocity</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guimarães, Mateus C.</creatorcontrib><creatorcontrib>Pimentel, Nuno</creatorcontrib><creatorcontrib>Pinho, Fernando T.</creatorcontrib><creatorcontrib>da Silva, Carlos B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guimarães, Mateus C.</au><au>Pimentel, Nuno</au><au>Pinho, Fernando T.</au><au>da Silva, Carlos B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct numerical simulations of turbulent viscoelastic jets</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2020-09-25</date><risdate>2020</risdate><volume>899</volume><artnum>A11</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Direct numerical simulations (DNS) of spatially evolving turbulent planar jets of viscoelastic fluids described by the FENE-P model, such as those consisting of a Newtonian fluid solvent carrying long chain polymer molecules, are carried out in order to develop a theory for the far field of turbulent jets of viscoelastic fluids. New evolution relations for the jet shear-layer thickness $\unicode[STIX]{x1D6FF}(x)$, centreline velocity $U_{c}(x)$ and maximum polymer stresses $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)$ are derived and validated by the new DNS data, yielding $\unicode[STIX]{x1D6FF}(x)\sim x$, $U_{c}(x)\sim x^{-1/2}$, and $\unicode[STIX]{x1D70E}_{c}^{[p]}(x)\sim x^{-5/2}$, respectively, where $x$ is the coordinate in the streamwise direction. It is shown that, compared with a classical (Newtonian) turbulent jet, the effect of the polymers is to reduce the spreading rate, centreline velocity decay, Reynolds stresses and viscous dissipation rate. The self-preserving character of the flow is analysed and it is shown that profiles of mean velocity, Reynolds stresses and polymer stresses are self-similar provided the proper scales are used in the normalisation of these quantities. A fundamental difference from the Newtonian jet in this regard is the necessity for two, instead of only one, different velocity and length scales to properly characterise the evolution of the turbulent flow. These extra velocity and length scales are directly related to a time scale associated with the characteristic fading memory property of viscoelastic fluids.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2020.402</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-6268-3968</orcidid><orcidid>https://orcid.org/0000-0002-6866-5469</orcidid><orcidid>https://orcid.org/0000-0002-9576-4622</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2020-09, Vol.899, Article A11 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_crossref_primary_10_1017_jfm_2020_402 |
source | Cambridge University Press Journals Complete |
subjects | Aquatic reptiles Computational fluid dynamics Computer simulation Decay rate Evolution Fluid flow Fluids Jets JFM Papers Kinematics Length Mathematical models Newtonian fluids Polymers Profiles Reynolds stresses Rheology Seafloor spreading Self-similarity Shear layers Simulation Solvents Stresses Theory Thickness Turbulent flow Turbulent jets Velocity Viscoelastic fluids Viscoelasticity Viscosity |
title | Direct numerical simulations of turbulent viscoelastic jets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20numerical%20simulations%20of%20turbulent%20viscoelastic%20jets&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Guimar%C3%A3es,%20Mateus%20C.&rft.date=2020-09-25&rft.volume=899&rft.artnum=A11&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2020.402&rft_dat=%3Cproquest_cross%3E2424882255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424882255&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2020_402&rfr_iscdi=true |