ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES
We give proofs of de Rham comparison isomorphisms for rigid-analytic varieties, with coefficients and in families. This relies on the theory of perfectoid spaces. Another new ingredient is the pro-étale site, which makes all constructions completely functorial.
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Pi 2013, Vol.1, Article e1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Forum of mathematics. Pi |
container_volume | 1 |
creator | SCHOLZE, PETER |
description | We give proofs of de Rham comparison isomorphisms for rigid-analytic varieties, with coefficients and in families. This relies on the theory of perfectoid spaces. Another new ingredient is the pro-étale site, which makes all constructions completely functorial. |
doi_str_mv | 10.1017/fmp.2013.1 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_fmp_2013_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_fmp_2013_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1781-3c6f7bb437f11b5b95da3fba8e49e700788bb6672a9cd6bc8eae62b54b8425db3</originalsourceid><addsrcrecordid>eNpNz81qg0AUBeChtNCQZtMncF3Q3us4Py5FjQ5IBWsLWQ1zdQZaGhp01bdvQrvI6hw4cOBj7BEhQUD1HI6nJAXkCd6wTQoCYgFa3l71e7Zb108AQBCc57hhSVGZMmr7qqmjsa374RDt-yEaTGOquHgpusN43t-LwdSjqV8f2F1wX6vf_eeWve3rsWzjrm9MWXTxhEpjzCcZFFHGVUAkQbmYHQ_ktM9yrwCU1kRSqtTl0yxp0t55mZLISGepmIlv2dPf77R8r-vigz0tH0e3_FgEe8HaM9ZesBb5L1dHQiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>SCHOLZE, PETER</creator><creatorcontrib>SCHOLZE, PETER</creatorcontrib><description>We give proofs of de Rham comparison isomorphisms for rigid-analytic varieties, with coefficients and in families. This relies on the theory of perfectoid spaces. Another new ingredient is the pro-étale site, which makes all constructions completely functorial.</description><identifier>ISSN: 2050-5086</identifier><identifier>EISSN: 2050-5086</identifier><identifier>DOI: 10.1017/fmp.2013.1</identifier><language>eng</language><ispartof>Forum of mathematics. Pi, 2013, Vol.1, Article e1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1781-3c6f7bb437f11b5b95da3fba8e49e700788bb6672a9cd6bc8eae62b54b8425db3</citedby><cites>FETCH-LOGICAL-c1781-3c6f7bb437f11b5b95da3fba8e49e700788bb6672a9cd6bc8eae62b54b8425db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>SCHOLZE, PETER</creatorcontrib><title>ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES</title><title>Forum of mathematics. Pi</title><description>We give proofs of de Rham comparison isomorphisms for rigid-analytic varieties, with coefficients and in families. This relies on the theory of perfectoid spaces. Another new ingredient is the pro-étale site, which makes all constructions completely functorial.</description><issn>2050-5086</issn><issn>2050-5086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNz81qg0AUBeChtNCQZtMncF3Q3us4Py5FjQ5IBWsLWQ1zdQZaGhp01bdvQrvI6hw4cOBj7BEhQUD1HI6nJAXkCd6wTQoCYgFa3l71e7Zb108AQBCc57hhSVGZMmr7qqmjsa374RDt-yEaTGOquHgpusN43t-LwdSjqV8f2F1wX6vf_eeWve3rsWzjrm9MWXTxhEpjzCcZFFHGVUAkQbmYHQ_ktM9yrwCU1kRSqtTl0yxp0t55mZLISGepmIlv2dPf77R8r-vigz0tH0e3_FgEe8HaM9ZesBb5L1dHQiE</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>SCHOLZE, PETER</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2013</creationdate><title>ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES</title><author>SCHOLZE, PETER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1781-3c6f7bb437f11b5b95da3fba8e49e700788bb6672a9cd6bc8eae62b54b8425db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHOLZE, PETER</creatorcontrib><collection>CrossRef</collection><jtitle>Forum of mathematics. Pi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHOLZE, PETER</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES</atitle><jtitle>Forum of mathematics. Pi</jtitle><date>2013</date><risdate>2013</risdate><volume>1</volume><artnum>e1</artnum><issn>2050-5086</issn><eissn>2050-5086</eissn><abstract>We give proofs of de Rham comparison isomorphisms for rigid-analytic varieties, with coefficients and in families. This relies on the theory of perfectoid spaces. Another new ingredient is the pro-étale site, which makes all constructions completely functorial.</abstract><doi>10.1017/fmp.2013.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-5086 |
ispartof | Forum of mathematics. Pi, 2013, Vol.1, Article e1 |
issn | 2050-5086 2050-5086 |
language | eng |
recordid | cdi_crossref_primary_10_1017_fmp_2013_1 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ADIC%20HODGE%20THEORY%20FOR%20RIGID-ANALYTIC%20VARIETIES&rft.jtitle=Forum%20of%20mathematics.%20Pi&rft.au=SCHOLZE,%20PETER&rft.date=2013&rft.volume=1&rft.artnum=e1&rft.issn=2050-5086&rft.eissn=2050-5086&rft_id=info:doi/10.1017/fmp.2013.1&rft_dat=%3Ccrossref%3E10_1017_fmp_2013_1%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |