Dimension estimates for iterated function systems and repellers. Part II

This is the second part of our study on the dimension theory of $C^1$ iterated function systems (IFSs) and repellers on $\mathbb {R}^d$ . In the first part [D.-J. Feng and K. Simon. Dimension estimates for $C^1$ iterated function systems and repellers. Part I. Preprint , 2020, arXiv:2007.15320], we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2022-11, Vol.42 (11), p.3357-3392
Hauptverfasser: FENG, DE-JUN, SIMON, KÁROLY
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3392
container_issue 11
container_start_page 3357
container_title Ergodic theory and dynamical systems
container_volume 42
creator FENG, DE-JUN
SIMON, KÁROLY
description This is the second part of our study on the dimension theory of $C^1$ iterated function systems (IFSs) and repellers on $\mathbb {R}^d$ . In the first part [D.-J. Feng and K. Simon. Dimension estimates for $C^1$ iterated function systems and repellers. Part I. Preprint , 2020, arXiv:2007.15320], we proved that the upper box-counting dimension of the attractor of every $C^1$ IFS on ${\Bbb R}^d$ is bounded above by its singularity dimension, and the upper packing dimension of every ergodic invariant measure associated with this IFS is bounded above by its Lyapunov dimension. Here we introduce a generalized transversality condition (GTC) for parameterized families of $C^1$ IFSs, and show that if the GTC is satisfied, then the dimensions of the IFS attractor and of the ergodic invariant measures are given by these upper bounds for almost every (in an appropriate sense) parameter. Moreover, we verify the GTC for some parameterized families of $C^1$ IFSs on ${\Bbb R}^d$ .
doi_str_mv 10.1017/etds.2021.92
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_etds_2021_92</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_etds_2021_92</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1182-469f367b5339808573be0bbad57e212a8191ff854e2de488eb56e110f09ca5d83</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoWEd3_oD8AFtz82jTpYyPKQzoQtclbW6g0seQGxfz723R1eFw4PDxMXYPogAB1SMmT4UUEopaXrAMdFnnWkN1yTIBWuXKmuqa3RB9CyEUVCZjh-dhwpmGZeZIaZhcQuJhiXxIGNfiefiZ-7TtdKaEE3E3ex7xhOOIkQr-4WLiTXPLroIbCe_-c8e-Xl8-94f8-P7W7J-OeQ9gZb4iBVVWnVGqtmLlUR2KrnPeVChBOgs1hGCNRulRW4udKRFABFH3znirduzh77ePC1HE0J7iih3PLYh2s9BuFtrNQltL9Qs9vVBx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dimension estimates for iterated function systems and repellers. Part II</title><source>Cambridge Journals</source><creator>FENG, DE-JUN ; SIMON, KÁROLY</creator><creatorcontrib>FENG, DE-JUN ; SIMON, KÁROLY</creatorcontrib><description>This is the second part of our study on the dimension theory of $C^1$ iterated function systems (IFSs) and repellers on $\mathbb {R}^d$ . In the first part [D.-J. Feng and K. Simon. Dimension estimates for $C^1$ iterated function systems and repellers. Part I. Preprint , 2020, arXiv:2007.15320], we proved that the upper box-counting dimension of the attractor of every $C^1$ IFS on ${\Bbb R}^d$ is bounded above by its singularity dimension, and the upper packing dimension of every ergodic invariant measure associated with this IFS is bounded above by its Lyapunov dimension. Here we introduce a generalized transversality condition (GTC) for parameterized families of $C^1$ IFSs, and show that if the GTC is satisfied, then the dimensions of the IFS attractor and of the ergodic invariant measures are given by these upper bounds for almost every (in an appropriate sense) parameter. Moreover, we verify the GTC for some parameterized families of $C^1$ IFSs on ${\Bbb R}^d$ .</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2021.92</identifier><language>eng</language><ispartof>Ergodic theory and dynamical systems, 2022-11, Vol.42 (11), p.3357-3392</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1182-469f367b5339808573be0bbad57e212a8191ff854e2de488eb56e110f09ca5d83</citedby><cites>FETCH-LOGICAL-c1182-469f367b5339808573be0bbad57e212a8191ff854e2de488eb56e110f09ca5d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>FENG, DE-JUN</creatorcontrib><creatorcontrib>SIMON, KÁROLY</creatorcontrib><title>Dimension estimates for iterated function systems and repellers. Part II</title><title>Ergodic theory and dynamical systems</title><description>This is the second part of our study on the dimension theory of $C^1$ iterated function systems (IFSs) and repellers on $\mathbb {R}^d$ . In the first part [D.-J. Feng and K. Simon. Dimension estimates for $C^1$ iterated function systems and repellers. Part I. Preprint , 2020, arXiv:2007.15320], we proved that the upper box-counting dimension of the attractor of every $C^1$ IFS on ${\Bbb R}^d$ is bounded above by its singularity dimension, and the upper packing dimension of every ergodic invariant measure associated with this IFS is bounded above by its Lyapunov dimension. Here we introduce a generalized transversality condition (GTC) for parameterized families of $C^1$ IFSs, and show that if the GTC is satisfied, then the dimensions of the IFS attractor and of the ergodic invariant measures are given by these upper bounds for almost every (in an appropriate sense) parameter. Moreover, we verify the GTC for some parameterized families of $C^1$ IFSs on ${\Bbb R}^d$ .</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxDAUhYMoWEd3_oD8AFtz82jTpYyPKQzoQtclbW6g0seQGxfz723R1eFw4PDxMXYPogAB1SMmT4UUEopaXrAMdFnnWkN1yTIBWuXKmuqa3RB9CyEUVCZjh-dhwpmGZeZIaZhcQuJhiXxIGNfiefiZ-7TtdKaEE3E3ex7xhOOIkQr-4WLiTXPLroIbCe_-c8e-Xl8-94f8-P7W7J-OeQ9gZb4iBVVWnVGqtmLlUR2KrnPeVChBOgs1hGCNRulRW4udKRFABFH3znirduzh77ePC1HE0J7iih3PLYh2s9BuFtrNQltL9Qs9vVBx</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>FENG, DE-JUN</creator><creator>SIMON, KÁROLY</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202211</creationdate><title>Dimension estimates for iterated function systems and repellers. Part II</title><author>FENG, DE-JUN ; SIMON, KÁROLY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1182-469f367b5339808573be0bbad57e212a8191ff854e2de488eb56e110f09ca5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FENG, DE-JUN</creatorcontrib><creatorcontrib>SIMON, KÁROLY</creatorcontrib><collection>CrossRef</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FENG, DE-JUN</au><au>SIMON, KÁROLY</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimension estimates for iterated function systems and repellers. Part II</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><date>2022-11</date><risdate>2022</risdate><volume>42</volume><issue>11</issue><spage>3357</spage><epage>3392</epage><pages>3357-3392</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>This is the second part of our study on the dimension theory of $C^1$ iterated function systems (IFSs) and repellers on $\mathbb {R}^d$ . In the first part [D.-J. Feng and K. Simon. Dimension estimates for $C^1$ iterated function systems and repellers. Part I. Preprint , 2020, arXiv:2007.15320], we proved that the upper box-counting dimension of the attractor of every $C^1$ IFS on ${\Bbb R}^d$ is bounded above by its singularity dimension, and the upper packing dimension of every ergodic invariant measure associated with this IFS is bounded above by its Lyapunov dimension. Here we introduce a generalized transversality condition (GTC) for parameterized families of $C^1$ IFSs, and show that if the GTC is satisfied, then the dimensions of the IFS attractor and of the ergodic invariant measures are given by these upper bounds for almost every (in an appropriate sense) parameter. Moreover, we verify the GTC for some parameterized families of $C^1$ IFSs on ${\Bbb R}^d$ .</abstract><doi>10.1017/etds.2021.92</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2022-11, Vol.42 (11), p.3357-3392
issn 0143-3857
1469-4417
language eng
recordid cdi_crossref_primary_10_1017_etds_2021_92
source Cambridge Journals
title Dimension estimates for iterated function systems and repellers. Part II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimension%20estimates%20for%20iterated%20function%20systems%20and%20repellers.%20Part%20II&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=FENG,%20DE-JUN&rft.date=2022-11&rft.volume=42&rft.issue=11&rft.spage=3357&rft.epage=3392&rft.pages=3357-3392&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2021.92&rft_dat=%3Ccrossref%3E10_1017_etds_2021_92%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true