Cocycles on groupoids arising from -actions

We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space and study generalized Ruelle operators and $ C^{\ast } $ -algebras associated to these groupoids. We provide a new characterization of $ 1 $ -cocycles on these groupoids taking v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2022-11, Vol.42 (11), p.3325-3356
Hauptverfasser: FARSI, CARLA, HUANG, LEONARD, KUMJIAN, ALEX, PACKER, JUDITH
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3356
container_issue 11
container_start_page 3325
container_title Ergodic theory and dynamical systems
container_volume 42
creator FARSI, CARLA
HUANG, LEONARD
KUMJIAN, ALEX
PACKER, JUDITH
description We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space and study generalized Ruelle operators and $ C^{\ast } $ -algebras associated to these groupoids. We provide a new characterization of $ 1 $ -cocycles on these groupoids taking values in a locally compact abelian group, given in terms of $ k $ -tuples of continuous functions on the unit space satisfying certain canonical identities. Using this, we develop an extended Ruelle–Perron–Frobenius theory for dynamical systems of several commuting operators ( $ k $ -Ruelle triples and commuting Ruelle operators). Results on KMS states on $ C^{\ast } $ -algebras constructed from these groupoids are derived. When the groupoids being studied come from higher-rank graphs, our results recover existence and uniqueness results for KMS states associated to the graphs.
doi_str_mv 10.1017/etds.2021.69
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_etds_2021_69</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_etds_2021_69</sourcerecordid><originalsourceid>FETCH-LOGICAL-c759-a6d8e512b26a62d959f4fd9c82454a166fd0f063feae2be000dc114246e42ac13</originalsourceid><addsrcrecordid>eNotz0tLAzEYheEgCo7VnT8ge82YL5dvJksZvEHBTfchzaVE2klJ6qL_Xgddnd3LeQi5B94Dh-EpnkLrBRfQo7kgHSg0TCkYLknHQUkmRz1ck5vWvjjnEgbdkYep-LPfx0bLTHe1fB9LDo26mluedzTVcqDM-VMuc7slV8ntW7z73xXZvL5spne2_nz7mJ7XzA_aMIdhjBrEVqBDEYw2SaVg_CiUVg4QU-CJo0zRRbGNv0-CB1BCYVTCeZAr8viX9bW0VmOyx5oPrp4tcLs47eK0i9OikT_2-0Xm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cocycles on groupoids arising from -actions</title><source>Cambridge University Press Journals Complete</source><creator>FARSI, CARLA ; HUANG, LEONARD ; KUMJIAN, ALEX ; PACKER, JUDITH</creator><creatorcontrib>FARSI, CARLA ; HUANG, LEONARD ; KUMJIAN, ALEX ; PACKER, JUDITH</creatorcontrib><description>We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space and study generalized Ruelle operators and $ C^{\ast } $ -algebras associated to these groupoids. We provide a new characterization of $ 1 $ -cocycles on these groupoids taking values in a locally compact abelian group, given in terms of $ k $ -tuples of continuous functions on the unit space satisfying certain canonical identities. Using this, we develop an extended Ruelle–Perron–Frobenius theory for dynamical systems of several commuting operators ( $ k $ -Ruelle triples and commuting Ruelle operators). Results on KMS states on $ C^{\ast } $ -algebras constructed from these groupoids are derived. When the groupoids being studied come from higher-rank graphs, our results recover existence and uniqueness results for KMS states associated to the graphs.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2021.69</identifier><language>eng</language><ispartof>Ergodic theory and dynamical systems, 2022-11, Vol.42 (11), p.3325-3356</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c759-a6d8e512b26a62d959f4fd9c82454a166fd0f063feae2be000dc114246e42ac13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>FARSI, CARLA</creatorcontrib><creatorcontrib>HUANG, LEONARD</creatorcontrib><creatorcontrib>KUMJIAN, ALEX</creatorcontrib><creatorcontrib>PACKER, JUDITH</creatorcontrib><title>Cocycles on groupoids arising from -actions</title><title>Ergodic theory and dynamical systems</title><description>We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space and study generalized Ruelle operators and $ C^{\ast } $ -algebras associated to these groupoids. We provide a new characterization of $ 1 $ -cocycles on these groupoids taking values in a locally compact abelian group, given in terms of $ k $ -tuples of continuous functions on the unit space satisfying certain canonical identities. Using this, we develop an extended Ruelle–Perron–Frobenius theory for dynamical systems of several commuting operators ( $ k $ -Ruelle triples and commuting Ruelle operators). Results on KMS states on $ C^{\ast } $ -algebras constructed from these groupoids are derived. When the groupoids being studied come from higher-rank graphs, our results recover existence and uniqueness results for KMS states associated to the graphs.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotz0tLAzEYheEgCo7VnT8ge82YL5dvJksZvEHBTfchzaVE2klJ6qL_Xgddnd3LeQi5B94Dh-EpnkLrBRfQo7kgHSg0TCkYLknHQUkmRz1ck5vWvjjnEgbdkYep-LPfx0bLTHe1fB9LDo26mluedzTVcqDM-VMuc7slV8ntW7z73xXZvL5spne2_nz7mJ7XzA_aMIdhjBrEVqBDEYw2SaVg_CiUVg4QU-CJo0zRRbGNv0-CB1BCYVTCeZAr8viX9bW0VmOyx5oPrp4tcLs47eK0i9OikT_2-0Xm</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>FARSI, CARLA</creator><creator>HUANG, LEONARD</creator><creator>KUMJIAN, ALEX</creator><creator>PACKER, JUDITH</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202211</creationdate><title>Cocycles on groupoids arising from -actions</title><author>FARSI, CARLA ; HUANG, LEONARD ; KUMJIAN, ALEX ; PACKER, JUDITH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c759-a6d8e512b26a62d959f4fd9c82454a166fd0f063feae2be000dc114246e42ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FARSI, CARLA</creatorcontrib><creatorcontrib>HUANG, LEONARD</creatorcontrib><creatorcontrib>KUMJIAN, ALEX</creatorcontrib><creatorcontrib>PACKER, JUDITH</creatorcontrib><collection>CrossRef</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FARSI, CARLA</au><au>HUANG, LEONARD</au><au>KUMJIAN, ALEX</au><au>PACKER, JUDITH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cocycles on groupoids arising from -actions</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><date>2022-11</date><risdate>2022</risdate><volume>42</volume><issue>11</issue><spage>3325</spage><epage>3356</epage><pages>3325-3356</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We consider groupoids constructed from a finite number of commuting local homeomorphisms acting on a compact metric space and study generalized Ruelle operators and $ C^{\ast } $ -algebras associated to these groupoids. We provide a new characterization of $ 1 $ -cocycles on these groupoids taking values in a locally compact abelian group, given in terms of $ k $ -tuples of continuous functions on the unit space satisfying certain canonical identities. Using this, we develop an extended Ruelle–Perron–Frobenius theory for dynamical systems of several commuting operators ( $ k $ -Ruelle triples and commuting Ruelle operators). Results on KMS states on $ C^{\ast } $ -algebras constructed from these groupoids are derived. When the groupoids being studied come from higher-rank graphs, our results recover existence and uniqueness results for KMS states associated to the graphs.</abstract><doi>10.1017/etds.2021.69</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2022-11, Vol.42 (11), p.3325-3356
issn 0143-3857
1469-4417
language eng
recordid cdi_crossref_primary_10_1017_etds_2021_69
source Cambridge University Press Journals Complete
title Cocycles on groupoids arising from -actions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cocycles%20on%20groupoids%20arising%20from%20-actions&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=FARSI,%20CARLA&rft.date=2022-11&rft.volume=42&rft.issue=11&rft.spage=3325&rft.epage=3356&rft.pages=3325-3356&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2021.69&rft_dat=%3Ccrossref%3E10_1017_etds_2021_69%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true