The expressiveness of quasiperiodic and minimal shifts of finite type

We study multidimensional minimal and quasiperiodic shifts of finite type. We prove for these classes several results that were previously known for the shifts of finite type in general, without restriction. We show that some quasiperiodic shifts of finite type admit only non-computable configuratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2021-04, Vol.41 (4), p.1086-1138
Hauptverfasser: DURAND, BRUNO, ROMASHCHENKO, ANDREI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1138
container_issue 4
container_start_page 1086
container_title Ergodic theory and dynamical systems
container_volume 41
creator DURAND, BRUNO
ROMASHCHENKO, ANDREI
description We study multidimensional minimal and quasiperiodic shifts of finite type. We prove for these classes several results that were previously known for the shifts of finite type in general, without restriction. We show that some quasiperiodic shifts of finite type admit only non-computable configurations; we characterize the classes of Turing degrees that can be represented by quasiperiodic shifts of finite type. We also transpose to the classes of minimal/quasiperiodic shifts of finite type some results on subdynamics previously known for effective shifts without restrictions: every effective minimal (quasiperiodic) shift of dimension $d$ can be represented as a projection of a subdynamics of a minimal (respectively, quasiperiodic) shift of finite type of dimension $d+1$ .
doi_str_mv 10.1017/etds.2019.112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_etds_2019_112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2019_112</cupid><sourcerecordid>2430607496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-9ebdece0514e5b0bd0553f64f7efc8bc5b77fd264ff44161b018fe8e88ab9a9f3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouH4cvRc8iXSdNEnTHmXxCxa86Dkk7cSN7DY1yfrx7826ohcPnmYYnnd4eQg5oTClQOUFpj5OK6DtlNJqh0wor9uScyp3yQQoZyVrhNwnBzE-AwCjUkzI1cMCC3wfA8boXnHIo_C2eFnr6EYMzveuK_TQFys3uJVeFnHhbPpibL4kLNLHiEdkz-plxOPveUger68eZrfl_P7mbnY5LzvGeCpbND12CIJyFAZMD0IwW3Mr0XaN6YSR0vZVPthcu6YGaGOxwabRptWtZYfkbPt3oZdqDLlQ-FBeO3V7OVebW9YAleDtK83s6ZYdg39ZY0zq2a_DkOupijOoQfK2zlS5pbrgYwxof95SUBuramNVbayqbDXzzZZ_Q-Nt7BwOHf5kslYpaqA1yxuImUs6OT_M_HpIOXr-_2imL76L6ZUJrn_C3_5_V_sElUabPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430607496</pqid></control><display><type>article</type><title>The expressiveness of quasiperiodic and minimal shifts of finite type</title><source>Cambridge University Press Journals</source><creator>DURAND, BRUNO ; ROMASHCHENKO, ANDREI</creator><creatorcontrib>DURAND, BRUNO ; ROMASHCHENKO, ANDREI</creatorcontrib><description>We study multidimensional minimal and quasiperiodic shifts of finite type. We prove for these classes several results that were previously known for the shifts of finite type in general, without restriction. We show that some quasiperiodic shifts of finite type admit only non-computable configurations; we characterize the classes of Turing degrees that can be represented by quasiperiodic shifts of finite type. We also transpose to the classes of minimal/quasiperiodic shifts of finite type some results on subdynamics previously known for effective shifts without restrictions: every effective minimal (quasiperiodic) shift of dimension $d$ can be represented as a projection of a subdynamics of a minimal (respectively, quasiperiodic) shift of finite type of dimension $d+1$ .</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2019.112</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computer Science ; Discrete Mathematics ; Dynamical Systems ; Mathematics ; Mathematics, Applied ; Original Article ; Physical Sciences ; Science &amp; Technology</subject><ispartof>Ergodic theory and dynamical systems, 2021-04, Vol.41 (4), p.1086-1138</ispartof><rights>The Author(s) 2020. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000756016300005</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c334t-9ebdece0514e5b0bd0553f64f7efc8bc5b77fd264ff44161b018fe8e88ab9a9f3</cites><orcidid>0000-0001-7723-7880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385719001123/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,315,781,785,886,27928,27929,55632</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01702549$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>DURAND, BRUNO</creatorcontrib><creatorcontrib>ROMASHCHENKO, ANDREI</creatorcontrib><title>The expressiveness of quasiperiodic and minimal shifts of finite type</title><title>Ergodic theory and dynamical systems</title><addtitle>ERGOD THEOR DYN SYST</addtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We study multidimensional minimal and quasiperiodic shifts of finite type. We prove for these classes several results that were previously known for the shifts of finite type in general, without restriction. We show that some quasiperiodic shifts of finite type admit only non-computable configurations; we characterize the classes of Turing degrees that can be represented by quasiperiodic shifts of finite type. We also transpose to the classes of minimal/quasiperiodic shifts of finite type some results on subdynamics previously known for effective shifts without restrictions: every effective minimal (quasiperiodic) shift of dimension $d$ can be represented as a projection of a subdynamics of a minimal (respectively, quasiperiodic) shift of finite type of dimension $d+1$ .</description><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Dynamical Systems</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Original Article</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkE1LxDAQhoMouH4cvRc8iXSdNEnTHmXxCxa86Dkk7cSN7DY1yfrx7826ohcPnmYYnnd4eQg5oTClQOUFpj5OK6DtlNJqh0wor9uScyp3yQQoZyVrhNwnBzE-AwCjUkzI1cMCC3wfA8boXnHIo_C2eFnr6EYMzveuK_TQFys3uJVeFnHhbPpibL4kLNLHiEdkz-plxOPveUger68eZrfl_P7mbnY5LzvGeCpbND12CIJyFAZMD0IwW3Mr0XaN6YSR0vZVPthcu6YGaGOxwabRptWtZYfkbPt3oZdqDLlQ-FBeO3V7OVebW9YAleDtK83s6ZYdg39ZY0zq2a_DkOupijOoQfK2zlS5pbrgYwxof95SUBuramNVbayqbDXzzZZ_Q-Nt7BwOHf5kslYpaqA1yxuImUs6OT_M_HpIOXr-_2imL76L6ZUJrn_C3_5_V_sElUabPQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>DURAND, BRUNO</creator><creator>ROMASHCHENKO, ANDREI</creator><general>Cambridge University Press</general><general>Cambridge Univ Press</general><general>Cambridge University Press (CUP)</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7723-7880</orcidid></search><sort><creationdate>20210401</creationdate><title>The expressiveness of quasiperiodic and minimal shifts of finite type</title><author>DURAND, BRUNO ; ROMASHCHENKO, ANDREI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-9ebdece0514e5b0bd0553f64f7efc8bc5b77fd264ff44161b018fe8e88ab9a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Dynamical Systems</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Original Article</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DURAND, BRUNO</creatorcontrib><creatorcontrib>ROMASHCHENKO, ANDREI</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DURAND, BRUNO</au><au>ROMASHCHENKO, ANDREI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The expressiveness of quasiperiodic and minimal shifts of finite type</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><stitle>ERGOD THEOR DYN SYST</stitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>41</volume><issue>4</issue><spage>1086</spage><epage>1138</epage><pages>1086-1138</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We study multidimensional minimal and quasiperiodic shifts of finite type. We prove for these classes several results that were previously known for the shifts of finite type in general, without restriction. We show that some quasiperiodic shifts of finite type admit only non-computable configurations; we characterize the classes of Turing degrees that can be represented by quasiperiodic shifts of finite type. We also transpose to the classes of minimal/quasiperiodic shifts of finite type some results on subdynamics previously known for effective shifts without restrictions: every effective minimal (quasiperiodic) shift of dimension $d$ can be represented as a projection of a subdynamics of a minimal (respectively, quasiperiodic) shift of finite type of dimension $d+1$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2019.112</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0001-7723-7880</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2021-04, Vol.41 (4), p.1086-1138
issn 0143-3857
1469-4417
language eng
recordid cdi_crossref_primary_10_1017_etds_2019_112
source Cambridge University Press Journals
subjects Computer Science
Discrete Mathematics
Dynamical Systems
Mathematics
Mathematics, Applied
Original Article
Physical Sciences
Science & Technology
title The expressiveness of quasiperiodic and minimal shifts of finite type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T21%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20expressiveness%20of%20quasiperiodic%20and%20minimal%20shifts%20of%20finite%20type&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=DURAND,%20BRUNO&rft.date=2021-04-01&rft.volume=41&rft.issue=4&rft.spage=1086&rft.epage=1138&rft.pages=1086-1138&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2019.112&rft_dat=%3Cproquest_cross%3E2430607496%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430607496&rft_id=info:pmid/&rft_cupid=10_1017_etds_2019_112&rfr_iscdi=true