The expressiveness of quasiperiodic and minimal shifts of finite type

We study multidimensional minimal and quasiperiodic shifts of finite type. We prove for these classes several results that were previously known for the shifts of finite type in general, without restriction. We show that some quasiperiodic shifts of finite type admit only non-computable configuratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2021-04, Vol.41 (4), p.1086-1138
Hauptverfasser: DURAND, BRUNO, ROMASHCHENKO, ANDREI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study multidimensional minimal and quasiperiodic shifts of finite type. We prove for these classes several results that were previously known for the shifts of finite type in general, without restriction. We show that some quasiperiodic shifts of finite type admit only non-computable configurations; we characterize the classes of Turing degrees that can be represented by quasiperiodic shifts of finite type. We also transpose to the classes of minimal/quasiperiodic shifts of finite type some results on subdynamics previously known for effective shifts without restrictions: every effective minimal (quasiperiodic) shift of dimension $d$ can be represented as a projection of a subdynamics of a minimal (respectively, quasiperiodic) shift of finite type of dimension $d+1$ .
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2019.112