Markov partitions and homology for -solenoids
Given a relatively prime pair of integers, $n\geq m>1$ , there is associated a topological dynamical system which we refer to as an $n/m$ -solenoid. It is also a Smale space, as defined by David Ruelle, meaning that it has local coordinates of contracting and expanding directions. In this case, t...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2017-05, Vol.37 (3), p.716-738 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 738 |
---|---|
container_issue | 3 |
container_start_page | 716 |
container_title | Ergodic theory and dynamical systems |
container_volume | 37 |
creator | BURKE, NIGEL D. PUTNAM, IAN F. |
description | Given a relatively prime pair of integers,
$n\geq m>1$
, there is associated a topological dynamical system which we refer to as an
$n/m$
-solenoid. It is also a Smale space, as defined by David Ruelle, meaning that it has local coordinates of contracting and expanding directions. In this case, these are locally products of the real and various
$p$
-adic numbers. In the special case,
$m=2,n=3$
and for
$n>3m$
, we construct Markov partitions for such systems. The second author has developed a homology theory for Smale spaces and we compute this in these examples, using the given Markov partitions, for all values of
$n\geq m>1$
and relatively prime. |
doi_str_mv | 10.1017/etds.2015.71 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_etds_2015_71</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_etds_2015_71</sourcerecordid><originalsourceid>FETCH-LOGICAL-c801-9a2828c8a7cc3a784b8a2a46a082cbe46f266e0b045594312f2e0a2c70e2cea43</originalsourceid><addsrcrecordid>eNotz81KxDAUQOEgCtbRnQ_QBzD13iRN0qUM_sGIm9mH2zTRaqcZkiLM20vR1dkd-Bi7RWgQ0NyHZSiNAGwbg2esQqU7rhSac1YBKsmlbc0luyrlCwAkmrZi_I3yd_qpj5SXcRnTXGqah_ozHdKUPk51TLnmJU1hTuNQrtlFpKmEm_9u2P7pcb994bv359ftw457C8g7ElZYb8l4L8lY1VsSpDSBFb4PSkehdYAeVNt2SqKIIgAJbyAIH0jJDbv72_qcSskhumMeD5RPDsGtUrdK3Sp1BuUvqhxGmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Markov partitions and homology for -solenoids</title><source>Cambridge University Press Journals Complete</source><creator>BURKE, NIGEL D. ; PUTNAM, IAN F.</creator><creatorcontrib>BURKE, NIGEL D. ; PUTNAM, IAN F.</creatorcontrib><description>Given a relatively prime pair of integers,
$n\geq m>1$
, there is associated a topological dynamical system which we refer to as an
$n/m$
-solenoid. It is also a Smale space, as defined by David Ruelle, meaning that it has local coordinates of contracting and expanding directions. In this case, these are locally products of the real and various
$p$
-adic numbers. In the special case,
$m=2,n=3$
and for
$n>3m$
, we construct Markov partitions for such systems. The second author has developed a homology theory for Smale spaces and we compute this in these examples, using the given Markov partitions, for all values of
$n\geq m>1$
and relatively prime.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2015.71</identifier><language>eng</language><ispartof>Ergodic theory and dynamical systems, 2017-05, Vol.37 (3), p.716-738</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c801-9a2828c8a7cc3a784b8a2a46a082cbe46f266e0b045594312f2e0a2c70e2cea43</citedby><cites>FETCH-LOGICAL-c801-9a2828c8a7cc3a784b8a2a46a082cbe46f266e0b045594312f2e0a2c70e2cea43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>BURKE, NIGEL D.</creatorcontrib><creatorcontrib>PUTNAM, IAN F.</creatorcontrib><title>Markov partitions and homology for -solenoids</title><title>Ergodic theory and dynamical systems</title><description>Given a relatively prime pair of integers,
$n\geq m>1$
, there is associated a topological dynamical system which we refer to as an
$n/m$
-solenoid. It is also a Smale space, as defined by David Ruelle, meaning that it has local coordinates of contracting and expanding directions. In this case, these are locally products of the real and various
$p$
-adic numbers. In the special case,
$m=2,n=3$
and for
$n>3m$
, we construct Markov partitions for such systems. The second author has developed a homology theory for Smale spaces and we compute this in these examples, using the given Markov partitions, for all values of
$n\geq m>1$
and relatively prime.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotz81KxDAUQOEgCtbRnQ_QBzD13iRN0qUM_sGIm9mH2zTRaqcZkiLM20vR1dkd-Bi7RWgQ0NyHZSiNAGwbg2esQqU7rhSac1YBKsmlbc0luyrlCwAkmrZi_I3yd_qpj5SXcRnTXGqah_ozHdKUPk51TLnmJU1hTuNQrtlFpKmEm_9u2P7pcb994bv359ftw457C8g7ElZYb8l4L8lY1VsSpDSBFb4PSkehdYAeVNt2SqKIIgAJbyAIH0jJDbv72_qcSskhumMeD5RPDsGtUrdK3Sp1BuUvqhxGmQ</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>BURKE, NIGEL D.</creator><creator>PUTNAM, IAN F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201705</creationdate><title>Markov partitions and homology for -solenoids</title><author>BURKE, NIGEL D. ; PUTNAM, IAN F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c801-9a2828c8a7cc3a784b8a2a46a082cbe46f266e0b045594312f2e0a2c70e2cea43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BURKE, NIGEL D.</creatorcontrib><creatorcontrib>PUTNAM, IAN F.</creatorcontrib><collection>CrossRef</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BURKE, NIGEL D.</au><au>PUTNAM, IAN F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov partitions and homology for -solenoids</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><date>2017-05</date><risdate>2017</risdate><volume>37</volume><issue>3</issue><spage>716</spage><epage>738</epage><pages>716-738</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Given a relatively prime pair of integers,
$n\geq m>1$
, there is associated a topological dynamical system which we refer to as an
$n/m$
-solenoid. It is also a Smale space, as defined by David Ruelle, meaning that it has local coordinates of contracting and expanding directions. In this case, these are locally products of the real and various
$p$
-adic numbers. In the special case,
$m=2,n=3$
and for
$n>3m$
, we construct Markov partitions for such systems. The second author has developed a homology theory for Smale spaces and we compute this in these examples, using the given Markov partitions, for all values of
$n\geq m>1$
and relatively prime.</abstract><doi>10.1017/etds.2015.71</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2017-05, Vol.37 (3), p.716-738 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_crossref_primary_10_1017_etds_2015_71 |
source | Cambridge University Press Journals Complete |
title | Markov partitions and homology for -solenoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20partitions%20and%20homology%20for%20-solenoids&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=BURKE,%20NIGEL%20D.&rft.date=2017-05&rft.volume=37&rft.issue=3&rft.spage=716&rft.epage=738&rft.pages=716-738&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2015.71&rft_dat=%3Ccrossref%3E10_1017_etds_2015_71%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |