Physico-chemical properties and microstructure of bentonite in highly alkaline environments

Cementitious materials and their alkaline pore fluids can change the structure of bentonite used as a raw material for road embankments or concrete storage of garbage cans. This study investigated the alteration of montmorillonite-rich bentonite from northeast Morocco (Trebia deposit, Nador) in alka...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clays and clay minerals 2024-10, Vol.72, Article e15
Hauptverfasser: Harrou, Achraf, Lechheb, Mahdi, El Ouahabi, Meriam, Fagel, Nathalie, Gharibi, Elkhadir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Clays and clay minerals
container_volume 72
creator Harrou, Achraf
Lechheb, Mahdi
El Ouahabi, Meriam
Fagel, Nathalie
Gharibi, Elkhadir
description Cementitious materials and their alkaline pore fluids can change the structure of bentonite used as a raw material for road embankments or concrete storage of garbage cans. This study investigated the alteration of montmorillonite-rich bentonite from northeast Morocco (Trebia deposit, Nador) in alkaline media rich in Ca 2+ , Mg 2+ , Na + , or K + . Specimens based on raw bentonite mixed with variable proportions of oxides (CaO, MgO) or hydroxides (NaOH, KOH) and water were prepared and aged for 28 days. Mineralogical composition by X-ray diffraction (XRD) was determined on raw bentonite and specimens to follow phase changes. Chemical composition and thermal characteristics were determined for raw bentonite and specimens by Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric/differential thermal analysis (TGA/DTA). Microstructural evolution and alteration of the external surface of bentonite were evaluated using scanning electron microscopy coupled with energy dispersive X-ray (SEM/EDX) analysis. XRD results of bentonite-CaO mixture demonstrated the formation of gels (e.g. C-S-H) and calcite. When the amount of CaO added increased, excess portlandite and the precipitation of calcite in the outer surface of bentonite occurred, stopping pozzolanic reaction and consequently decreasing the compressive strength of specimens. On the other hand, the addition of MgO allowed the formation of brucite. Sodalite and cancrinite were neoformed with the addition of 32 wt.% NaOH after 28 days of hydration. The addition of hydroxides (NaOH or KOH) to bentonite did not reveal any setting due to the absence of the formation of cementitious phases.
doi_str_mv 10.1017/cmn.2024.27
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_cmn_2024_27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_cmn_2024_27</sourcerecordid><originalsourceid>FETCH-LOGICAL-c121t-d7c59197ec2728900493be09f2f8adc8b6575f560eff44ddded01252c508a39e3</originalsourceid><addsrcrecordid>eNotkE1LxDAURYMoOI6u_APZS8eX16ZpljL4BQO60JWLkklebLRNS9IR5t87g64uXC6Hy2HsWsBKgFC3dogrBKxWqE7YQkiJRVPW6pQtAEAXTQ3VObvI-QsA66rEBft47fY52LGwHQ3Bmp5PaZwozYEyN9HxQ5nGPKednXeJ-Oj5luI8xjATD5F34bPr99z036YPkTjFn5DGOBw2-ZKdedNnuvrPJXt_uH9bPxWbl8fn9d2msALFXDhlpRZakUWFjQaodLkl0B59Y5xttrVU0ssayPuqcs6RA4ESrYTGlJrKJbv54x6f5kS-nVIYTNq3Atqjl_bgpT16aVGVv860WIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physico-chemical properties and microstructure of bentonite in highly alkaline environments</title><source>Cambridge University Press Journals Complete</source><creator>Harrou, Achraf ; Lechheb, Mahdi ; El Ouahabi, Meriam ; Fagel, Nathalie ; Gharibi, Elkhadir</creator><creatorcontrib>Harrou, Achraf ; Lechheb, Mahdi ; El Ouahabi, Meriam ; Fagel, Nathalie ; Gharibi, Elkhadir</creatorcontrib><description>Cementitious materials and their alkaline pore fluids can change the structure of bentonite used as a raw material for road embankments or concrete storage of garbage cans. This study investigated the alteration of montmorillonite-rich bentonite from northeast Morocco (Trebia deposit, Nador) in alkaline media rich in Ca 2+ , Mg 2+ , Na + , or K + . Specimens based on raw bentonite mixed with variable proportions of oxides (CaO, MgO) or hydroxides (NaOH, KOH) and water were prepared and aged for 28 days. Mineralogical composition by X-ray diffraction (XRD) was determined on raw bentonite and specimens to follow phase changes. Chemical composition and thermal characteristics were determined for raw bentonite and specimens by Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric/differential thermal analysis (TGA/DTA). Microstructural evolution and alteration of the external surface of bentonite were evaluated using scanning electron microscopy coupled with energy dispersive X-ray (SEM/EDX) analysis. XRD results of bentonite-CaO mixture demonstrated the formation of gels (e.g. C-S-H) and calcite. When the amount of CaO added increased, excess portlandite and the precipitation of calcite in the outer surface of bentonite occurred, stopping pozzolanic reaction and consequently decreasing the compressive strength of specimens. On the other hand, the addition of MgO allowed the formation of brucite. Sodalite and cancrinite were neoformed with the addition of 32 wt.% NaOH after 28 days of hydration. The addition of hydroxides (NaOH or KOH) to bentonite did not reveal any setting due to the absence of the formation of cementitious phases.</description><identifier>ISSN: 0009-8604</identifier><identifier>EISSN: 1552-8367</identifier><identifier>DOI: 10.1017/cmn.2024.27</identifier><language>eng</language><ispartof>Clays and clay minerals, 2024-10, Vol.72, Article e15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c121t-d7c59197ec2728900493be09f2f8adc8b6575f560eff44ddded01252c508a39e3</cites><orcidid>0000-0003-2095-1826 ; 0000-0001-8036-5242 ; 0000-0002-4905-7724 ; 0000-0002-1257-3610 ; 0000-0002-8231-8295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Harrou, Achraf</creatorcontrib><creatorcontrib>Lechheb, Mahdi</creatorcontrib><creatorcontrib>El Ouahabi, Meriam</creatorcontrib><creatorcontrib>Fagel, Nathalie</creatorcontrib><creatorcontrib>Gharibi, Elkhadir</creatorcontrib><title>Physico-chemical properties and microstructure of bentonite in highly alkaline environments</title><title>Clays and clay minerals</title><description>Cementitious materials and their alkaline pore fluids can change the structure of bentonite used as a raw material for road embankments or concrete storage of garbage cans. This study investigated the alteration of montmorillonite-rich bentonite from northeast Morocco (Trebia deposit, Nador) in alkaline media rich in Ca 2+ , Mg 2+ , Na + , or K + . Specimens based on raw bentonite mixed with variable proportions of oxides (CaO, MgO) or hydroxides (NaOH, KOH) and water were prepared and aged for 28 days. Mineralogical composition by X-ray diffraction (XRD) was determined on raw bentonite and specimens to follow phase changes. Chemical composition and thermal characteristics were determined for raw bentonite and specimens by Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric/differential thermal analysis (TGA/DTA). Microstructural evolution and alteration of the external surface of bentonite were evaluated using scanning electron microscopy coupled with energy dispersive X-ray (SEM/EDX) analysis. XRD results of bentonite-CaO mixture demonstrated the formation of gels (e.g. C-S-H) and calcite. When the amount of CaO added increased, excess portlandite and the precipitation of calcite in the outer surface of bentonite occurred, stopping pozzolanic reaction and consequently decreasing the compressive strength of specimens. On the other hand, the addition of MgO allowed the formation of brucite. Sodalite and cancrinite were neoformed with the addition of 32 wt.% NaOH after 28 days of hydration. The addition of hydroxides (NaOH or KOH) to bentonite did not reveal any setting due to the absence of the formation of cementitious phases.</description><issn>0009-8604</issn><issn>1552-8367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAURYMoOI6u_APZS8eX16ZpljL4BQO60JWLkklebLRNS9IR5t87g64uXC6Hy2HsWsBKgFC3dogrBKxWqE7YQkiJRVPW6pQtAEAXTQ3VObvI-QsA66rEBft47fY52LGwHQ3Bmp5PaZwozYEyN9HxQ5nGPKednXeJ-Oj5luI8xjATD5F34bPr99z036YPkTjFn5DGOBw2-ZKdedNnuvrPJXt_uH9bPxWbl8fn9d2msALFXDhlpRZakUWFjQaodLkl0B59Y5xttrVU0ssayPuqcs6RA4ESrYTGlJrKJbv54x6f5kS-nVIYTNq3Atqjl_bgpT16aVGVv860WIo</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Harrou, Achraf</creator><creator>Lechheb, Mahdi</creator><creator>El Ouahabi, Meriam</creator><creator>Fagel, Nathalie</creator><creator>Gharibi, Elkhadir</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2095-1826</orcidid><orcidid>https://orcid.org/0000-0001-8036-5242</orcidid><orcidid>https://orcid.org/0000-0002-4905-7724</orcidid><orcidid>https://orcid.org/0000-0002-1257-3610</orcidid><orcidid>https://orcid.org/0000-0002-8231-8295</orcidid></search><sort><creationdate>20241017</creationdate><title>Physico-chemical properties and microstructure of bentonite in highly alkaline environments</title><author>Harrou, Achraf ; Lechheb, Mahdi ; El Ouahabi, Meriam ; Fagel, Nathalie ; Gharibi, Elkhadir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c121t-d7c59197ec2728900493be09f2f8adc8b6575f560eff44ddded01252c508a39e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrou, Achraf</creatorcontrib><creatorcontrib>Lechheb, Mahdi</creatorcontrib><creatorcontrib>El Ouahabi, Meriam</creatorcontrib><creatorcontrib>Fagel, Nathalie</creatorcontrib><creatorcontrib>Gharibi, Elkhadir</creatorcontrib><collection>CrossRef</collection><jtitle>Clays and clay minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrou, Achraf</au><au>Lechheb, Mahdi</au><au>El Ouahabi, Meriam</au><au>Fagel, Nathalie</au><au>Gharibi, Elkhadir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physico-chemical properties and microstructure of bentonite in highly alkaline environments</atitle><jtitle>Clays and clay minerals</jtitle><date>2024-10-17</date><risdate>2024</risdate><volume>72</volume><artnum>e15</artnum><issn>0009-8604</issn><eissn>1552-8367</eissn><abstract>Cementitious materials and their alkaline pore fluids can change the structure of bentonite used as a raw material for road embankments or concrete storage of garbage cans. This study investigated the alteration of montmorillonite-rich bentonite from northeast Morocco (Trebia deposit, Nador) in alkaline media rich in Ca 2+ , Mg 2+ , Na + , or K + . Specimens based on raw bentonite mixed with variable proportions of oxides (CaO, MgO) or hydroxides (NaOH, KOH) and water were prepared and aged for 28 days. Mineralogical composition by X-ray diffraction (XRD) was determined on raw bentonite and specimens to follow phase changes. Chemical composition and thermal characteristics were determined for raw bentonite and specimens by Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric/differential thermal analysis (TGA/DTA). Microstructural evolution and alteration of the external surface of bentonite were evaluated using scanning electron microscopy coupled with energy dispersive X-ray (SEM/EDX) analysis. XRD results of bentonite-CaO mixture demonstrated the formation of gels (e.g. C-S-H) and calcite. When the amount of CaO added increased, excess portlandite and the precipitation of calcite in the outer surface of bentonite occurred, stopping pozzolanic reaction and consequently decreasing the compressive strength of specimens. On the other hand, the addition of MgO allowed the formation of brucite. Sodalite and cancrinite were neoformed with the addition of 32 wt.% NaOH after 28 days of hydration. The addition of hydroxides (NaOH or KOH) to bentonite did not reveal any setting due to the absence of the formation of cementitious phases.</abstract><doi>10.1017/cmn.2024.27</doi><orcidid>https://orcid.org/0000-0003-2095-1826</orcidid><orcidid>https://orcid.org/0000-0001-8036-5242</orcidid><orcidid>https://orcid.org/0000-0002-4905-7724</orcidid><orcidid>https://orcid.org/0000-0002-1257-3610</orcidid><orcidid>https://orcid.org/0000-0002-8231-8295</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-8604
ispartof Clays and clay minerals, 2024-10, Vol.72, Article e15
issn 0009-8604
1552-8367
language eng
recordid cdi_crossref_primary_10_1017_cmn_2024_27
source Cambridge University Press Journals Complete
title Physico-chemical properties and microstructure of bentonite in highly alkaline environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physico-chemical%20properties%20and%20microstructure%20of%20bentonite%20in%20highly%20alkaline%20environments&rft.jtitle=Clays%20and%20clay%20minerals&rft.au=Harrou,%20Achraf&rft.date=2024-10-17&rft.volume=72&rft.artnum=e15&rft.issn=0009-8604&rft.eissn=1552-8367&rft_id=info:doi/10.1017/cmn.2024.27&rft_dat=%3Ccrossref%3E10_1017_cmn_2024_27%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true