A hybrid data mining framework for variable annuity portfolio valuation

A variable annuity is a modern life insurance product that offers its policyholders participation in investment with various guarantees. To address the computational challenge of valuing large portfolios of variable annuity contracts, several data mining frameworks based on statistical learning have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASTIN Bulletin : The Journal of the IAA 2023-09, Vol.53 (3), p.580-595
1. Verfasser: Gweon, Hyukjun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 3
container_start_page 580
container_title ASTIN Bulletin : The Journal of the IAA
container_volume 53
creator Gweon, Hyukjun
description A variable annuity is a modern life insurance product that offers its policyholders participation in investment with various guarantees. To address the computational challenge of valuing large portfolios of variable annuity contracts, several data mining frameworks based on statistical learning have been proposed in the past decade. Existing methods utilize regression modeling to predict the market value of most contracts. Despite the efficiency of those methods, a regression model fitted to a small amount of data produces substantial prediction errors, and thus, it is challenging to rely on existing frameworks when highly accurate valuation results are desired or required. In this paper, we propose a novel hybrid framework that effectively chooses and assesses easy-to-predict contracts using the random forest model while leaving hard-to-predict contracts for the Monte Carlo simulation. The effectiveness of the hybrid approach is illustrated with an experimental study.
doi_str_mv 10.1017/asb.2023.26
format Article
fullrecord <record><control><sourceid>econis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_asb_2023_26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859944655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-a1299b374248cc7d6aa50050fcc2a30e69ad16a0a08f94c061511e676f3e58413</originalsourceid><addsrcrecordid>eNpFkLFOwzAURS0EEqUw8QPeUcp7duzEY1VBQarEAnP04thgSOPKTkH5e1oViekO9-gMh7FbhAUCVveU24UAIRdCn7EZVrUsUCo4ZzNQqAqQGi_ZVc6fABJrIWZsveQfU5tCxzsaiW_DEIZ37hNt3U9MX9zHxL8pBWp7x2kY9mGc-C6m0cc-xMPV72kMcbhmF5767G7-ds7eHh9eV0_F5mX9vFpuCisMjAWhMKaVVSnK2tqq00QKQIG3VpAEpw11qAkIam9KCxoVotOV9tKpukQ5Z3cnr00x5-R8s0thS2lqEJpjg-bQoDk2aIQ-0PxEOxuHkP_ZWhlTllop-Qu9tlmx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A hybrid data mining framework for variable annuity portfolio valuation</title><source>Cambridge Journals - CAUL Collection</source><creator>Gweon, Hyukjun</creator><creatorcontrib>Gweon, Hyukjun</creatorcontrib><description>A variable annuity is a modern life insurance product that offers its policyholders participation in investment with various guarantees. To address the computational challenge of valuing large portfolios of variable annuity contracts, several data mining frameworks based on statistical learning have been proposed in the past decade. Existing methods utilize regression modeling to predict the market value of most contracts. Despite the efficiency of those methods, a regression model fitted to a small amount of data produces substantial prediction errors, and thus, it is challenging to rely on existing frameworks when highly accurate valuation results are desired or required. In this paper, we propose a novel hybrid framework that effectively chooses and assesses easy-to-predict contracts using the random forest model while leaving hard-to-predict contracts for the Monte Carlo simulation. The effectiveness of the hybrid approach is illustrated with an experimental study.</description><identifier>ISSN: 0515-0361</identifier><identifier>EISSN: 1783-1350</identifier><identifier>DOI: 10.1017/asb.2023.26</identifier><language>eng</language><ispartof>ASTIN Bulletin : The Journal of the IAA, 2023-09, Vol.53 (3), p.580-595</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-a1299b374248cc7d6aa50050fcc2a30e69ad16a0a08f94c061511e676f3e58413</citedby><cites>FETCH-LOGICAL-c290t-a1299b374248cc7d6aa50050fcc2a30e69ad16a0a08f94c061511e676f3e58413</cites><orcidid>0000-0001-9035-984X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Gweon, Hyukjun</creatorcontrib><title>A hybrid data mining framework for variable annuity portfolio valuation</title><title>ASTIN Bulletin : The Journal of the IAA</title><description>A variable annuity is a modern life insurance product that offers its policyholders participation in investment with various guarantees. To address the computational challenge of valuing large portfolios of variable annuity contracts, several data mining frameworks based on statistical learning have been proposed in the past decade. Existing methods utilize regression modeling to predict the market value of most contracts. Despite the efficiency of those methods, a regression model fitted to a small amount of data produces substantial prediction errors, and thus, it is challenging to rely on existing frameworks when highly accurate valuation results are desired or required. In this paper, we propose a novel hybrid framework that effectively chooses and assesses easy-to-predict contracts using the random forest model while leaving hard-to-predict contracts for the Monte Carlo simulation. The effectiveness of the hybrid approach is illustrated with an experimental study.</description><issn>0515-0361</issn><issn>1783-1350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkLFOwzAURS0EEqUw8QPeUcp7duzEY1VBQarEAnP04thgSOPKTkH5e1oViekO9-gMh7FbhAUCVveU24UAIRdCn7EZVrUsUCo4ZzNQqAqQGi_ZVc6fABJrIWZsveQfU5tCxzsaiW_DEIZ37hNt3U9MX9zHxL8pBWp7x2kY9mGc-C6m0cc-xMPV72kMcbhmF5767G7-ds7eHh9eV0_F5mX9vFpuCisMjAWhMKaVVSnK2tqq00QKQIG3VpAEpw11qAkIam9KCxoVotOV9tKpukQ5Z3cnr00x5-R8s0thS2lqEJpjg-bQoDk2aIQ-0PxEOxuHkP_ZWhlTllop-Qu9tlmx</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Gweon, Hyukjun</creator><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9035-984X</orcidid></search><sort><creationdate>20230901</creationdate><title>A hybrid data mining framework for variable annuity portfolio valuation</title><author>Gweon, Hyukjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-a1299b374248cc7d6aa50050fcc2a30e69ad16a0a08f94c061511e676f3e58413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gweon, Hyukjun</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>ASTIN Bulletin : The Journal of the IAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gweon, Hyukjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid data mining framework for variable annuity portfolio valuation</atitle><jtitle>ASTIN Bulletin : The Journal of the IAA</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>53</volume><issue>3</issue><spage>580</spage><epage>595</epage><pages>580-595</pages><issn>0515-0361</issn><eissn>1783-1350</eissn><abstract>A variable annuity is a modern life insurance product that offers its policyholders participation in investment with various guarantees. To address the computational challenge of valuing large portfolios of variable annuity contracts, several data mining frameworks based on statistical learning have been proposed in the past decade. Existing methods utilize regression modeling to predict the market value of most contracts. Despite the efficiency of those methods, a regression model fitted to a small amount of data produces substantial prediction errors, and thus, it is challenging to rely on existing frameworks when highly accurate valuation results are desired or required. In this paper, we propose a novel hybrid framework that effectively chooses and assesses easy-to-predict contracts using the random forest model while leaving hard-to-predict contracts for the Monte Carlo simulation. The effectiveness of the hybrid approach is illustrated with an experimental study.</abstract><doi>10.1017/asb.2023.26</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9035-984X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0515-0361
ispartof ASTIN Bulletin : The Journal of the IAA, 2023-09, Vol.53 (3), p.580-595
issn 0515-0361
1783-1350
language eng
recordid cdi_crossref_primary_10_1017_asb_2023_26
source Cambridge Journals - CAUL Collection
title A hybrid data mining framework for variable annuity portfolio valuation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-econis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20data%20mining%20framework%20for%20variable%20annuity%20portfolio%20valuation&rft.jtitle=ASTIN%20Bulletin%20:%20The%20Journal%20of%20the%20IAA&rft.au=Gweon,%20Hyukjun&rft.date=2023-09-01&rft.volume=53&rft.issue=3&rft.spage=580&rft.epage=595&rft.pages=580-595&rft.issn=0515-0361&rft.eissn=1783-1350&rft_id=info:doi/10.1017/asb.2023.26&rft_dat=%3Ceconis_cross%3E1859944655%3C/econis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true