Sur les processus arithmétiques liés aux diviseurs

For natural integer n, let D n denote the random variable taking the values log d for d dividing n with uniform probability 1/τ(n). Then t↦ℙ(D n ≤n t ) (0≤t≤1) is an arithmetic process with respect to the uniform probability over the first N integers. It is known from previous works that this proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2016-07, Vol.48 (A), p.63-76
Hauptverfasser: de la Bretèche, R., Tenenbaum, G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue A
container_start_page 63
container_title Advances in applied probability
container_volume 48
creator de la Bretèche, R.
Tenenbaum, G.
description For natural integer n, let D n denote the random variable taking the values log d for d dividing n with uniform probability 1/τ(n). Then t↦ℙ(D n ≤n t ) (0≤t≤1) is an arithmetic process with respect to the uniform probability over the first N integers. It is known from previous works that this process converges to a limit law and that the same holds for various extensions. We investigate the generalized moments of arbitrary orders for the limit laws. We also evaluate the mean value of the two-dimensional distribution function ℙ(D n ≤n u , D{n/D n }≤n v ).
doi_str_mv 10.1017/apr.2016.42
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_apr_2016_42</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_apr_2016_42</cupid><sourcerecordid>10_1017_apr_2016_42</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1532-f232f6dad4d70e521a23e788a7a26eed5ce481e1c16c643e54e42dfc5bafe06a3</originalsourceid><addsrcrecordid>eNptj8tKAzEUhoMoOFZXvsDsJWPuyVaKNyi4UNchTc5oyowdk0b0kfocfTFT7NLV4Zzz8fN_CF1S0lFC9bWbUscIVZ1gR6ihQkusiBLHqCGEUGyUNqfoLOdVXbk2pEHiuaR2gNxOae0h55Jbl-LmfdxtN_Gz1McQd9t6LN9tiF8xQ0n5HJ30bshwcZgz9Hp3-zJ_wIun-8f5zQJ7KjnDPeOsV8EFETQByahjHLQxTjumAIL0IAwF6qnySnCQAgQLvZdL1wNRjs_Q1V-uT-ucE_R2SnF06cdSYvfCtgrbvbAVrNL4QLtxmWJ4A7tal_RRG_7L_wJ7Z1og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sur les processus arithmétiques liés aux diviseurs</title><source>Cambridge Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>de la Bretèche, R. ; Tenenbaum, G.</creator><creatorcontrib>de la Bretèche, R. ; Tenenbaum, G.</creatorcontrib><description>For natural integer n, let D n denote the random variable taking the values log d for d dividing n with uniform probability 1/τ(n). Then t↦ℙ(D n ≤n t ) (0≤t≤1) is an arithmetic process with respect to the uniform probability over the first N integers. It is known from previous works that this process converges to a limit law and that the same holds for various extensions. We investigate the generalized moments of arbitrary orders for the limit laws. We also evaluate the mean value of the two-dimensional distribution function ℙ(D n ≤n u , D{n/D n }≤n v ).</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1017/apr.2016.42</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Advances in applied probability, 2016-07, Vol.48 (A), p.63-76</ispartof><rights>Copyright © Applied Probability Trust 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1532-f232f6dad4d70e521a23e788a7a26eed5ce481e1c16c643e54e42dfc5bafe06a3</citedby><cites>FETCH-LOGICAL-c1532-f232f6dad4d70e521a23e788a7a26eed5ce481e1c16c643e54e42dfc5bafe06a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0001867816000422/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27922,27923,55626</link.rule.ids></links><search><creatorcontrib>de la Bretèche, R.</creatorcontrib><creatorcontrib>Tenenbaum, G.</creatorcontrib><title>Sur les processus arithmétiques liés aux diviseurs</title><title>Advances in applied probability</title><addtitle>Adv. Appl. Probab</addtitle><description>For natural integer n, let D n denote the random variable taking the values log d for d dividing n with uniform probability 1/τ(n). Then t↦ℙ(D n ≤n t ) (0≤t≤1) is an arithmetic process with respect to the uniform probability over the first N integers. It is known from previous works that this process converges to a limit law and that the same holds for various extensions. We investigate the generalized moments of arbitrary orders for the limit laws. We also evaluate the mean value of the two-dimensional distribution function ℙ(D n ≤n u , D{n/D n }≤n v ).</description><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNptj8tKAzEUhoMoOFZXvsDsJWPuyVaKNyi4UNchTc5oyowdk0b0kfocfTFT7NLV4Zzz8fN_CF1S0lFC9bWbUscIVZ1gR6ihQkusiBLHqCGEUGyUNqfoLOdVXbk2pEHiuaR2gNxOae0h55Jbl-LmfdxtN_Gz1McQd9t6LN9tiF8xQ0n5HJ30bshwcZgz9Hp3-zJ_wIun-8f5zQJ7KjnDPeOsV8EFETQByahjHLQxTjumAIL0IAwF6qnySnCQAgQLvZdL1wNRjs_Q1V-uT-ucE_R2SnF06cdSYvfCtgrbvbAVrNL4QLtxmWJ4A7tal_RRG_7L_wJ7Z1og</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>de la Bretèche, R.</creator><creator>Tenenbaum, G.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201607</creationdate><title>Sur les processus arithmétiques liés aux diviseurs</title><author>de la Bretèche, R. ; Tenenbaum, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1532-f232f6dad4d70e521a23e788a7a26eed5ce481e1c16c643e54e42dfc5bafe06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de la Bretèche, R.</creatorcontrib><creatorcontrib>Tenenbaum, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de la Bretèche, R.</au><au>Tenenbaum, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sur les processus arithmétiques liés aux diviseurs</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Adv. Appl. Probab</addtitle><date>2016-07</date><risdate>2016</risdate><volume>48</volume><issue>A</issue><spage>63</spage><epage>76</epage><pages>63-76</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><abstract>For natural integer n, let D n denote the random variable taking the values log d for d dividing n with uniform probability 1/τ(n). Then t↦ℙ(D n ≤n t ) (0≤t≤1) is an arithmetic process with respect to the uniform probability over the first N integers. It is known from previous works that this process converges to a limit law and that the same holds for various extensions. We investigate the generalized moments of arbitrary orders for the limit laws. We also evaluate the mean value of the two-dimensional distribution function ℙ(D n ≤n u , D{n/D n }≤n v ).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/apr.2016.42</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2016-07, Vol.48 (A), p.63-76
issn 0001-8678
1475-6064
language eng
recordid cdi_crossref_primary_10_1017_apr_2016_42
source Cambridge Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
title Sur les processus arithmétiques liés aux diviseurs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sur%20les%20processus%20arithm%C3%A9tiques%20li%C3%A9s%20aux%20diviseurs&rft.jtitle=Advances%20in%20applied%20probability&rft.au=de%20la%20Bret%C3%A8che,%20R.&rft.date=2016-07&rft.volume=48&rft.issue=A&rft.spage=63&rft.epage=76&rft.pages=63-76&rft.issn=0001-8678&rft.eissn=1475-6064&rft_id=info:doi/10.1017/apr.2016.42&rft_dat=%3Ccambridge_cross%3E10_1017_apr_2016_42%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_apr_2016_42&rfr_iscdi=true