Model Explanation via Support Graphs

In this note, we introduce the notion of support graph to define explanations for any model of a logic program. An explanation is an acyclic support graph that, for each true atom in the model, induces a proof in terms of program rules represented by labels. A classical model may have zero, one or s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and practice of logic programming 2024-02, p.1-14
Hauptverfasser: CABALAR, PEDRO, MUÑIZ, BRAIS
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Theory and practice of logic programming
container_volume
creator CABALAR, PEDRO
MUÑIZ, BRAIS
description In this note, we introduce the notion of support graph to define explanations for any model of a logic program. An explanation is an acyclic support graph that, for each true atom in the model, induces a proof in terms of program rules represented by labels. A classical model may have zero, one or several explanations: when it has at least one, it is called a justified model. We prove that all stable models are justified, whereas, for disjunctive programs, some justified models may not be stable. We also provide a meta-programming encoding in Answer Set Programming that generates the explanations for a given stable model of some program. We prove that the encoding is sound and complete, that is, there is a one-to-one correspondence between each answer set of the encoding and each explanation for the original stable model.
doi_str_mv 10.1017/S1471068424000048
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S1471068424000048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S1471068424000048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-5c5b0a62e8ea293cee9eb5c0f2f77fcf24ccc4eff989614f2353701c2292c6093</originalsourceid><addsrcrecordid>eNplT01LAzEUDKJgrf4Ab3vwGn0v3zlKqVWoeKiel_SZ4MraDckq-u_dqjfnMsMMzDCMnSNcIqC92qCyCMYpoWCCcgdsNlmaS3B4-KOR7_NjdlLrKwAaKdSMXdwPz7Fvlp-5D7swdsOu-ehCs3nPeShjsyohv9RTdpRCX-PZH8_Z083ycXHL1w-ru8X1mtO0OnJNegvBiOhiEF5SjD5uNUESydpESSgiUjEl77xBlYTU0gKSEF6QAS_nDH97qQy1lpjaXLq3UL5ahHZ_s_13U34DsypECQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model Explanation via Support Graphs</title><source>Alma/SFX Local Collection</source><creator>CABALAR, PEDRO ; MUÑIZ, BRAIS</creator><creatorcontrib>CABALAR, PEDRO ; MUÑIZ, BRAIS</creatorcontrib><description>In this note, we introduce the notion of support graph to define explanations for any model of a logic program. An explanation is an acyclic support graph that, for each true atom in the model, induces a proof in terms of program rules represented by labels. A classical model may have zero, one or several explanations: when it has at least one, it is called a justified model. We prove that all stable models are justified, whereas, for disjunctive programs, some justified models may not be stable. We also provide a meta-programming encoding in Answer Set Programming that generates the explanations for a given stable model of some program. We prove that the encoding is sound and complete, that is, there is a one-to-one correspondence between each answer set of the encoding and each explanation for the original stable model.</description><identifier>ISSN: 1471-0684</identifier><identifier>EISSN: 1475-3081</identifier><identifier>DOI: 10.1017/S1471068424000048</identifier><language>eng</language><ispartof>Theory and practice of logic programming, 2024-02, p.1-14</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-5c5b0a62e8ea293cee9eb5c0f2f77fcf24ccc4eff989614f2353701c2292c6093</cites><orcidid>0000-0001-7440-0953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>CABALAR, PEDRO</creatorcontrib><creatorcontrib>MUÑIZ, BRAIS</creatorcontrib><title>Model Explanation via Support Graphs</title><title>Theory and practice of logic programming</title><description>In this note, we introduce the notion of support graph to define explanations for any model of a logic program. An explanation is an acyclic support graph that, for each true atom in the model, induces a proof in terms of program rules represented by labels. A classical model may have zero, one or several explanations: when it has at least one, it is called a justified model. We prove that all stable models are justified, whereas, for disjunctive programs, some justified models may not be stable. We also provide a meta-programming encoding in Answer Set Programming that generates the explanations for a given stable model of some program. We prove that the encoding is sound and complete, that is, there is a one-to-one correspondence between each answer set of the encoding and each explanation for the original stable model.</description><issn>1471-0684</issn><issn>1475-3081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplT01LAzEUDKJgrf4Ab3vwGn0v3zlKqVWoeKiel_SZ4MraDckq-u_dqjfnMsMMzDCMnSNcIqC92qCyCMYpoWCCcgdsNlmaS3B4-KOR7_NjdlLrKwAaKdSMXdwPz7Fvlp-5D7swdsOu-ehCs3nPeShjsyohv9RTdpRCX-PZH8_Z083ycXHL1w-ru8X1mtO0OnJNegvBiOhiEF5SjD5uNUESydpESSgiUjEl77xBlYTU0gKSEF6QAS_nDH97qQy1lpjaXLq3UL5ahHZ_s_13U34DsypECQ</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>CABALAR, PEDRO</creator><creator>MUÑIZ, BRAIS</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7440-0953</orcidid></search><sort><creationdate>20240229</creationdate><title>Model Explanation via Support Graphs</title><author>CABALAR, PEDRO ; MUÑIZ, BRAIS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-5c5b0a62e8ea293cee9eb5c0f2f77fcf24ccc4eff989614f2353701c2292c6093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CABALAR, PEDRO</creatorcontrib><creatorcontrib>MUÑIZ, BRAIS</creatorcontrib><collection>CrossRef</collection><jtitle>Theory and practice of logic programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CABALAR, PEDRO</au><au>MUÑIZ, BRAIS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Explanation via Support Graphs</atitle><jtitle>Theory and practice of logic programming</jtitle><date>2024-02-29</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1471-0684</issn><eissn>1475-3081</eissn><abstract>In this note, we introduce the notion of support graph to define explanations for any model of a logic program. An explanation is an acyclic support graph that, for each true atom in the model, induces a proof in terms of program rules represented by labels. A classical model may have zero, one or several explanations: when it has at least one, it is called a justified model. We prove that all stable models are justified, whereas, for disjunctive programs, some justified models may not be stable. We also provide a meta-programming encoding in Answer Set Programming that generates the explanations for a given stable model of some program. We prove that the encoding is sound and complete, that is, there is a one-to-one correspondence between each answer set of the encoding and each explanation for the original stable model.</abstract><doi>10.1017/S1471068424000048</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7440-0953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-0684
ispartof Theory and practice of logic programming, 2024-02, p.1-14
issn 1471-0684
1475-3081
language eng
recordid cdi_crossref_primary_10_1017_S1471068424000048
source Alma/SFX Local Collection
title Model Explanation via Support Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Explanation%20via%20Support%20Graphs&rft.jtitle=Theory%20and%20practice%20of%20logic%20programming&rft.au=CABALAR,%20PEDRO&rft.date=2024-02-29&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1471-0684&rft.eissn=1475-3081&rft_id=info:doi/10.1017/S1471068424000048&rft_dat=%3Ccrossref%3E10_1017_S1471068424000048%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true