The minimal volume of the plane
We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.
Gespeichert in:
Veröffentlicht in: | Journal of the Australian Mathematical Society (2001) 1993-08, Vol.55 (1), p.23-40 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Journal of the Australian Mathematical Society (2001) |
container_volume | 55 |
creator | Bowditch, B. H. |
description | We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities. |
doi_str_mv | 10.1017/S1446788700031906 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S1446788700031906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446788700031906</cupid><sourcerecordid>10_1017_S1446788700031906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ee218ed9f40a751020408bdde830ed36970b7c99964089086658bcde565d340b3</originalsourceid><addsrcrecordid>eNp9j9tKw0AQhhdRMFYfwCvzAtGZ7PlSirZKRcUK3i1JdqKpOZRNW_TtTWnxRvBq4Ge--edj7BzhEgH11QsKobQxGgA4WlAHLNpGiUHQhyyCVPFEIcpjdtL3CwAhDOqIXcw_KG6qtmqyOt509bqhuCvj1ZAu66ylU3ZUZnVPZ_s5Yq-3N_PxNJk9Tu7G17OkEFytEqIUDXlbCsi0REhBgMm9J8OBPFdWQ64La60acgtGKWnywpNU0nMBOR8x3N0tQtf3gUq3DMNP4dshuK2h-2M4MMmOqfoVff0CWfh0SnMtnZo8u_tp-iCe8M3JYZ_vO7ImD5V_J7fo1qEdvP5p-QGsvV8H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The minimal volume of the plane</title><source>Cambridge Journals</source><source>Alma/SFX Local Collection</source><creator>Bowditch, B. H.</creator><creatorcontrib>Bowditch, B. H.</creatorcontrib><description>We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.</description><identifier>ISSN: 0263-6115</identifier><identifier>ISSN: 1446-7887</identifier><identifier>EISSN: 1446-8107</identifier><identifier>DOI: 10.1017/S1446788700031906</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>primary 53 C 20 ; secondary 57 M 50</subject><ispartof>Journal of the Australian Mathematical Society (2001), 1993-08, Vol.55 (1), p.23-40</ispartof><rights>Copyright © Australian Mathematical Society 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ee218ed9f40a751020408bdde830ed36970b7c99964089086658bcde565d340b3</citedby><cites>FETCH-LOGICAL-c436t-ee218ed9f40a751020408bdde830ed36970b7c99964089086658bcde565d340b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bowditch, B. H.</creatorcontrib><title>The minimal volume of the plane</title><title>Journal of the Australian Mathematical Society (2001)</title><addtitle>J Aust Math Soc A</addtitle><description>We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.</description><subject>primary 53 C 20</subject><subject>secondary 57 M 50</subject><issn>0263-6115</issn><issn>1446-7887</issn><issn>1446-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9j9tKw0AQhhdRMFYfwCvzAtGZ7PlSirZKRcUK3i1JdqKpOZRNW_TtTWnxRvBq4Ge--edj7BzhEgH11QsKobQxGgA4WlAHLNpGiUHQhyyCVPFEIcpjdtL3CwAhDOqIXcw_KG6qtmqyOt509bqhuCvj1ZAu66ylU3ZUZnVPZ_s5Yq-3N_PxNJk9Tu7G17OkEFytEqIUDXlbCsi0REhBgMm9J8OBPFdWQ64La60acgtGKWnywpNU0nMBOR8x3N0tQtf3gUq3DMNP4dshuK2h-2M4MMmOqfoVff0CWfh0SnMtnZo8u_tp-iCe8M3JYZ_vO7ImD5V_J7fo1qEdvP5p-QGsvV8H</recordid><startdate>19930801</startdate><enddate>19930801</enddate><creator>Bowditch, B. H.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930801</creationdate><title>The minimal volume of the plane</title><author>Bowditch, B. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ee218ed9f40a751020408bdde830ed36970b7c99964089086658bcde565d340b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>primary 53 C 20</topic><topic>secondary 57 M 50</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowditch, B. H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowditch, B. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The minimal volume of the plane</atitle><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle><addtitle>J Aust Math Soc A</addtitle><date>1993-08-01</date><risdate>1993</risdate><volume>55</volume><issue>1</issue><spage>23</spage><epage>40</epage><pages>23-40</pages><issn>0263-6115</issn><issn>1446-7887</issn><eissn>1446-8107</eissn><abstract>We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446788700031906</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-6115 |
ispartof | Journal of the Australian Mathematical Society (2001), 1993-08, Vol.55 (1), p.23-40 |
issn | 0263-6115 1446-7887 1446-8107 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S1446788700031906 |
source | Cambridge Journals; Alma/SFX Local Collection |
subjects | primary 53 C 20 secondary 57 M 50 |
title | The minimal volume of the plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20minimal%20volume%20of%20the%20plane&rft.jtitle=Journal%20of%20the%20Australian%20Mathematical%20Society%20(2001)&rft.au=Bowditch,%20B.%20H.&rft.date=1993-08-01&rft.volume=55&rft.issue=1&rft.spage=23&rft.epage=40&rft.pages=23-40&rft.issn=0263-6115&rft.eissn=1446-8107&rft_id=info:doi/10.1017/S1446788700031906&rft_dat=%3Ccambridge_cross%3E10_1017_S1446788700031906%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S1446788700031906&rfr_iscdi=true |