The minimal volume of the plane

We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Australian Mathematical Society (2001) 1993-08, Vol.55 (1), p.23-40
1. Verfasser: Bowditch, B. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 1
container_start_page 23
container_title Journal of the Australian Mathematical Society (2001)
container_volume 55
creator Bowditch, B. H.
description We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.
doi_str_mv 10.1017/S1446788700031906
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S1446788700031906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446788700031906</cupid><sourcerecordid>10_1017_S1446788700031906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ee218ed9f40a751020408bdde830ed36970b7c99964089086658bcde565d340b3</originalsourceid><addsrcrecordid>eNp9j9tKw0AQhhdRMFYfwCvzAtGZ7PlSirZKRcUK3i1JdqKpOZRNW_TtTWnxRvBq4Ge--edj7BzhEgH11QsKobQxGgA4WlAHLNpGiUHQhyyCVPFEIcpjdtL3CwAhDOqIXcw_KG6qtmqyOt509bqhuCvj1ZAu66ylU3ZUZnVPZ_s5Yq-3N_PxNJk9Tu7G17OkEFytEqIUDXlbCsi0REhBgMm9J8OBPFdWQ64La60acgtGKWnywpNU0nMBOR8x3N0tQtf3gUq3DMNP4dshuK2h-2M4MMmOqfoVff0CWfh0SnMtnZo8u_tp-iCe8M3JYZ_vO7ImD5V_J7fo1qEdvP5p-QGsvV8H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The minimal volume of the plane</title><source>Cambridge Journals</source><source>Alma/SFX Local Collection</source><creator>Bowditch, B. H.</creator><creatorcontrib>Bowditch, B. H.</creatorcontrib><description>We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.</description><identifier>ISSN: 0263-6115</identifier><identifier>ISSN: 1446-7887</identifier><identifier>EISSN: 1446-8107</identifier><identifier>DOI: 10.1017/S1446788700031906</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>primary 53 C 20 ; secondary 57 M 50</subject><ispartof>Journal of the Australian Mathematical Society (2001), 1993-08, Vol.55 (1), p.23-40</ispartof><rights>Copyright © Australian Mathematical Society 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ee218ed9f40a751020408bdde830ed36970b7c99964089086658bcde565d340b3</citedby><cites>FETCH-LOGICAL-c436t-ee218ed9f40a751020408bdde830ed36970b7c99964089086658bcde565d340b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bowditch, B. H.</creatorcontrib><title>The minimal volume of the plane</title><title>Journal of the Australian Mathematical Society (2001)</title><addtitle>J Aust Math Soc A</addtitle><description>We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.</description><subject>primary 53 C 20</subject><subject>secondary 57 M 50</subject><issn>0263-6115</issn><issn>1446-7887</issn><issn>1446-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9j9tKw0AQhhdRMFYfwCvzAtGZ7PlSirZKRcUK3i1JdqKpOZRNW_TtTWnxRvBq4Ge--edj7BzhEgH11QsKobQxGgA4WlAHLNpGiUHQhyyCVPFEIcpjdtL3CwAhDOqIXcw_KG6qtmqyOt509bqhuCvj1ZAu66ylU3ZUZnVPZ_s5Yq-3N_PxNJk9Tu7G17OkEFytEqIUDXlbCsi0REhBgMm9J8OBPFdWQ64La60acgtGKWnywpNU0nMBOR8x3N0tQtf3gUq3DMNP4dshuK2h-2M4MMmOqfoVff0CWfh0SnMtnZo8u_tp-iCe8M3JYZ_vO7ImD5V_J7fo1qEdvP5p-QGsvV8H</recordid><startdate>19930801</startdate><enddate>19930801</enddate><creator>Bowditch, B. H.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930801</creationdate><title>The minimal volume of the plane</title><author>Bowditch, B. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ee218ed9f40a751020408bdde830ed36970b7c99964089086658bcde565d340b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>primary 53 C 20</topic><topic>secondary 57 M 50</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowditch, B. H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowditch, B. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The minimal volume of the plane</atitle><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle><addtitle>J Aust Math Soc A</addtitle><date>1993-08-01</date><risdate>1993</risdate><volume>55</volume><issue>1</issue><spage>23</spage><epage>40</epage><pages>23-40</pages><issn>0263-6115</issn><issn>1446-7887</issn><eissn>1446-8107</eissn><abstract>We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446788700031906</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-6115
ispartof Journal of the Australian Mathematical Society (2001), 1993-08, Vol.55 (1), p.23-40
issn 0263-6115
1446-7887
1446-8107
language eng
recordid cdi_crossref_primary_10_1017_S1446788700031906
source Cambridge Journals; Alma/SFX Local Collection
subjects primary 53 C 20
secondary 57 M 50
title The minimal volume of the plane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20minimal%20volume%20of%20the%20plane&rft.jtitle=Journal%20of%20the%20Australian%20Mathematical%20Society%20(2001)&rft.au=Bowditch,%20B.%20H.&rft.date=1993-08-01&rft.volume=55&rft.issue=1&rft.spage=23&rft.epage=40&rft.pages=23-40&rft.issn=0263-6115&rft.eissn=1446-8107&rft_id=info:doi/10.1017/S1446788700031906&rft_dat=%3Ccambridge_cross%3E10_1017_S1446788700031906%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S1446788700031906&rfr_iscdi=true