On sequences of integrable functions
Let f1(x), f2(x), … be a sequence of functions belonging to the real or complex Banach space L, (see S. Banach: [1] (The results can be generalised to functions on any space that is the union of countably many sets of finite measure). We are concerned with various properties that such a sequence may...
Gespeichert in:
Veröffentlicht in: | Journal of the Australian Mathematical Society (2001) 1962-02, Vol.2 (3), p.295-300 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 300 |
---|---|
container_issue | 3 |
container_start_page | 295 |
container_title | Journal of the Australian Mathematical Society (2001) |
container_volume | 2 |
creator | Rennie, Basil C. |
description | Let f1(x), f2(x), … be a sequence of functions belonging to the real or complex Banach space L, (see S. Banach: [1] (The results can be generalised to functions on any space that is the union of countably many sets of finite measure). We are concerned with various properties that such a sequence may have, and in particular with the more important kinds of convergence (strong, weak and pointwise). This article shows what relations connect the various properties considered; for instance that for strong convergence (i.e. ║fn — f║ → 0) it is necessary and sufficient firstly that the sequence should converge weakly (i.e. if g is bounded and measurable then f(fn(x) — f(x))g(x)dx → 0) and secondly that any sub-sequence should contain a sub-sub-sequence converging p.p. to f(x). |
doi_str_mv | 10.1017/S1446788700026896 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S1446788700026896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446788700026896</cupid><sourcerecordid>10_1017_S1446788700026896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2376-3561b2de6c7f89ac25656d47c0967abbe38df9d0fee05a84830e5eb63675e6c83</originalsourceid><addsrcrecordid>eNp9j0FLAzEQhYMoWKs_wNsevK5ONptJ9iiLVqFapfXSS8hmJ2Vru6tJC_rv3dLiRfA08JjvPT7GLjlcc-DqZsrzHJXWCgAy1AUescEuSjUHdcwGfZynhRLylJ3FuASQCFoM2NWkTSJ9bql1FJPOJ027oUWw1YoSv23dpunaeM5OvF1FujjcIXu7v5uVD-l4Mnosb8epy4TCVEjkVVYTOuV1YV0mUWKdKwcFKltVJHTtixo8EUircy2AJFUoUMke0mLI-L7XhS7GQN58hGZtw7fhYHaa5o9mz6R7pokb-voFbHg3qISSBkevZvY0nz7Py9K89P_isGHXVWjqBZlltw1t7_XPyg9RRGLV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On sequences of integrable functions</title><source>Cambridge Journals Online</source><source>EZB Electronic Journals Library</source><creator>Rennie, Basil C.</creator><creatorcontrib>Rennie, Basil C.</creatorcontrib><description>Let f1(x), f2(x), … be a sequence of functions belonging to the real or complex Banach space L, (see S. Banach: [1] (The results can be generalised to functions on any space that is the union of countably many sets of finite measure). We are concerned with various properties that such a sequence may have, and in particular with the more important kinds of convergence (strong, weak and pointwise). This article shows what relations connect the various properties considered; for instance that for strong convergence (i.e. ║fn — f║ → 0) it is necessary and sufficient firstly that the sequence should converge weakly (i.e. if g is bounded and measurable then f(fn(x) — f(x))g(x)dx → 0) and secondly that any sub-sequence should contain a sub-sub-sequence converging p.p. to f(x).</description><identifier>ISSN: 0004-9735</identifier><identifier>ISSN: 1446-7887</identifier><identifier>EISSN: 1446-8107</identifier><identifier>DOI: 10.1017/S1446788700026896</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Journal of the Australian Mathematical Society (2001), 1962-02, Vol.2 (3), p.295-300</ispartof><rights>Copyright © Australian Mathematical Society 1962</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1446788700026896/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Rennie, Basil C.</creatorcontrib><title>On sequences of integrable functions</title><title>Journal of the Australian Mathematical Society (2001)</title><addtitle>J. Aust. Math. Soc</addtitle><description>Let f1(x), f2(x), … be a sequence of functions belonging to the real or complex Banach space L, (see S. Banach: [1] (The results can be generalised to functions on any space that is the union of countably many sets of finite measure). We are concerned with various properties that such a sequence may have, and in particular with the more important kinds of convergence (strong, weak and pointwise). This article shows what relations connect the various properties considered; for instance that for strong convergence (i.e. ║fn — f║ → 0) it is necessary and sufficient firstly that the sequence should converge weakly (i.e. if g is bounded and measurable then f(fn(x) — f(x))g(x)dx → 0) and secondly that any sub-sequence should contain a sub-sub-sequence converging p.p. to f(x).</description><issn>0004-9735</issn><issn>1446-7887</issn><issn>1446-8107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1962</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLAzEQhYMoWKs_wNsevK5ONptJ9iiLVqFapfXSS8hmJ2Vru6tJC_rv3dLiRfA08JjvPT7GLjlcc-DqZsrzHJXWCgAy1AUescEuSjUHdcwGfZynhRLylJ3FuASQCFoM2NWkTSJ9bql1FJPOJ027oUWw1YoSv23dpunaeM5OvF1FujjcIXu7v5uVD-l4Mnosb8epy4TCVEjkVVYTOuV1YV0mUWKdKwcFKltVJHTtixo8EUircy2AJFUoUMke0mLI-L7XhS7GQN58hGZtw7fhYHaa5o9mz6R7pokb-voFbHg3qISSBkevZvY0nz7Py9K89P_isGHXVWjqBZlltw1t7_XPyg9RRGLV</recordid><startdate>196202</startdate><enddate>196202</enddate><creator>Rennie, Basil C.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196202</creationdate><title>On sequences of integrable functions</title><author>Rennie, Basil C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2376-3561b2de6c7f89ac25656d47c0967abbe38df9d0fee05a84830e5eb63675e6c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1962</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rennie, Basil C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rennie, Basil C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On sequences of integrable functions</atitle><jtitle>Journal of the Australian Mathematical Society (2001)</jtitle><addtitle>J. Aust. Math. Soc</addtitle><date>1962-02</date><risdate>1962</risdate><volume>2</volume><issue>3</issue><spage>295</spage><epage>300</epage><pages>295-300</pages><issn>0004-9735</issn><issn>1446-7887</issn><eissn>1446-8107</eissn><abstract>Let f1(x), f2(x), … be a sequence of functions belonging to the real or complex Banach space L, (see S. Banach: [1] (The results can be generalised to functions on any space that is the union of countably many sets of finite measure). We are concerned with various properties that such a sequence may have, and in particular with the more important kinds of convergence (strong, weak and pointwise). This article shows what relations connect the various properties considered; for instance that for strong convergence (i.e. ║fn — f║ → 0) it is necessary and sufficient firstly that the sequence should converge weakly (i.e. if g is bounded and measurable then f(fn(x) — f(x))g(x)dx → 0) and secondly that any sub-sequence should contain a sub-sub-sequence converging p.p. to f(x).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446788700026896</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9735 |
ispartof | Journal of the Australian Mathematical Society (2001), 1962-02, Vol.2 (3), p.295-300 |
issn | 0004-9735 1446-7887 1446-8107 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S1446788700026896 |
source | Cambridge Journals Online; EZB Electronic Journals Library |
title | On sequences of integrable functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20sequences%20of%20integrable%20functions&rft.jtitle=Journal%20of%20the%20Australian%20Mathematical%20Society%20(2001)&rft.au=Rennie,%20Basil%20C.&rft.date=1962-02&rft.volume=2&rft.issue=3&rft.spage=295&rft.epage=300&rft.pages=295-300&rft.issn=0004-9735&rft.eissn=1446-8107&rft_id=info:doi/10.1017/S1446788700026896&rft_dat=%3Ccambridge_cross%3E10_1017_S1446788700026896%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S1446788700026896&rfr_iscdi=true |