Total Path Length for Random Recursive Trees

Total path length, or search cost, for a rooted tree is defined as the sum of all root-to-node distances. Let Tn be the total path length for a random recursive tree of order n. Mahmoud [10] showed that Wn := (Tn − E[Tn])/n converges almost surely and in L2 to a nondegenerate limiting random variabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 1999-07, Vol.8 (4), p.317-333
Hauptverfasser: DOBROW, ROBERT P., FILL, JAMES ALLEN
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 4
container_start_page 317
container_title Combinatorics, probability & computing
container_volume 8
creator DOBROW, ROBERT P.
FILL, JAMES ALLEN
description Total path length, or search cost, for a rooted tree is defined as the sum of all root-to-node distances. Let Tn be the total path length for a random recursive tree of order n. Mahmoud [10] showed that Wn := (Tn − E[Tn])/n converges almost surely and in L2 to a nondegenerate limiting random variable W. Here we give recurrence relations for the moments of Wn and of W and show that Wn converges to W in Lp for each 0 < p < ∞. We confirm the conjecture that the distribution of W is not normal. We also show that the distribution of W is characterized among all distributions having zero mean and finite variance by the distributional identity formula here where [Escr ](x) := − x ln x − (1 minus; x) ln(1 − x) is the binary entropy function, U is a uniform (0, 1) random variable, W* and W have the same distribution, and U, W and W* are mutually independent. Finally, we derive an approximation for the distribution of W using a Pearson curve density estimator.
doi_str_mv 10.1017/S0963548399003855
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0963548399003855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0963548399003855</cupid><sourcerecordid>10_1017_S0963548399003855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-74e79a934ff4d1b41dc5c8643b9db18fa94b0c5c57bbbe95a0ca423568f38b13</originalsourceid><addsrcrecordid>eNp9j19LwzAUxYMoWKcfwLd-AKs3zZ8mjzLcJlSca8HHkLTJ7FxXSTrRb2_Lhi-CTwfuOecefghdY7jFgLO7AiQnjAoiJQARjJ2gCFMukxRzcoqi0U5G_xxdhLABAMY4ROim7Hq9jZe6f4tzu1sP4jofr_Su7tp4Zau9D82njUtvbbhEZ05vg7066gSVs4dyukjy5_nj9D5PKpKyPsmozaSWhDpHa2woritWCU6JkbXBwmlJDQwnlhljrGQaKk1TwrhwRBhMJggf3la-C8Fbpz5802r_rTCokVb9oR06yaHThN5-_Ra0f1c8IxlTfP6iiuWseHoFrGDIk-OGbo1v6rVVm27vdwPWPys_UgJk6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Total Path Length for Random Recursive Trees</title><source>Cambridge University Press Journals Complete</source><creator>DOBROW, ROBERT P. ; FILL, JAMES ALLEN</creator><creatorcontrib>DOBROW, ROBERT P. ; FILL, JAMES ALLEN</creatorcontrib><description>Total path length, or search cost, for a rooted tree is defined as the sum of all root-to-node distances. Let Tn be the total path length for a random recursive tree of order n. Mahmoud [10] showed that Wn := (Tn − E[Tn])/n converges almost surely and in L2 to a nondegenerate limiting random variable W. Here we give recurrence relations for the moments of Wn and of W and show that Wn converges to W in Lp for each 0 &lt; p &lt; ∞. We confirm the conjecture that the distribution of W is not normal. We also show that the distribution of W is characterized among all distributions having zero mean and finite variance by the distributional identity formula here where [Escr ](x) := − x ln x − (1 minus; x) ln(1 − x) is the binary entropy function, U is a uniform (0, 1) random variable, W* and W have the same distribution, and U, W and W* are mutually independent. Finally, we derive an approximation for the distribution of W using a Pearson curve density estimator.</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548399003855</identifier><language>eng</language><publisher>Cambridge University Press</publisher><ispartof>Combinatorics, probability &amp; computing, 1999-07, Vol.8 (4), p.317-333</ispartof><rights>1999 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-74e79a934ff4d1b41dc5c8643b9db18fa94b0c5c57bbbe95a0ca423568f38b13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0963548399003855/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>DOBROW, ROBERT P.</creatorcontrib><creatorcontrib>FILL, JAMES ALLEN</creatorcontrib><title>Total Path Length for Random Recursive Trees</title><title>Combinatorics, probability &amp; computing</title><addtitle>Combinator. Probab. Comp</addtitle><description>Total path length, or search cost, for a rooted tree is defined as the sum of all root-to-node distances. Let Tn be the total path length for a random recursive tree of order n. Mahmoud [10] showed that Wn := (Tn − E[Tn])/n converges almost surely and in L2 to a nondegenerate limiting random variable W. Here we give recurrence relations for the moments of Wn and of W and show that Wn converges to W in Lp for each 0 &lt; p &lt; ∞. We confirm the conjecture that the distribution of W is not normal. We also show that the distribution of W is characterized among all distributions having zero mean and finite variance by the distributional identity formula here where [Escr ](x) := − x ln x − (1 minus; x) ln(1 − x) is the binary entropy function, U is a uniform (0, 1) random variable, W* and W have the same distribution, and U, W and W* are mutually independent. Finally, we derive an approximation for the distribution of W using a Pearson curve density estimator.</description><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9j19LwzAUxYMoWKcfwLd-AKs3zZ8mjzLcJlSca8HHkLTJ7FxXSTrRb2_Lhi-CTwfuOecefghdY7jFgLO7AiQnjAoiJQARjJ2gCFMukxRzcoqi0U5G_xxdhLABAMY4ROim7Hq9jZe6f4tzu1sP4jofr_Su7tp4Zau9D82njUtvbbhEZ05vg7066gSVs4dyukjy5_nj9D5PKpKyPsmozaSWhDpHa2woritWCU6JkbXBwmlJDQwnlhljrGQaKk1TwrhwRBhMJggf3la-C8Fbpz5802r_rTCokVb9oR06yaHThN5-_Ra0f1c8IxlTfP6iiuWseHoFrGDIk-OGbo1v6rVVm27vdwPWPys_UgJk6w</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>DOBROW, ROBERT P.</creator><creator>FILL, JAMES ALLEN</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990701</creationdate><title>Total Path Length for Random Recursive Trees</title><author>DOBROW, ROBERT P. ; FILL, JAMES ALLEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-74e79a934ff4d1b41dc5c8643b9db18fa94b0c5c57bbbe95a0ca423568f38b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOBROW, ROBERT P.</creatorcontrib><creatorcontrib>FILL, JAMES ALLEN</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Combinatorics, probability &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOBROW, ROBERT P.</au><au>FILL, JAMES ALLEN</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Path Length for Random Recursive Trees</atitle><jtitle>Combinatorics, probability &amp; computing</jtitle><addtitle>Combinator. Probab. Comp</addtitle><date>1999-07-01</date><risdate>1999</risdate><volume>8</volume><issue>4</issue><spage>317</spage><epage>333</epage><pages>317-333</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>Total path length, or search cost, for a rooted tree is defined as the sum of all root-to-node distances. Let Tn be the total path length for a random recursive tree of order n. Mahmoud [10] showed that Wn := (Tn − E[Tn])/n converges almost surely and in L2 to a nondegenerate limiting random variable W. Here we give recurrence relations for the moments of Wn and of W and show that Wn converges to W in Lp for each 0 &lt; p &lt; ∞. We confirm the conjecture that the distribution of W is not normal. We also show that the distribution of W is characterized among all distributions having zero mean and finite variance by the distributional identity formula here where [Escr ](x) := − x ln x − (1 minus; x) ln(1 − x) is the binary entropy function, U is a uniform (0, 1) random variable, W* and W have the same distribution, and U, W and W* are mutually independent. Finally, we derive an approximation for the distribution of W using a Pearson curve density estimator.</abstract><pub>Cambridge University Press</pub><doi>10.1017/S0963548399003855</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-5483
ispartof Combinatorics, probability & computing, 1999-07, Vol.8 (4), p.317-333
issn 0963-5483
1469-2163
language eng
recordid cdi_crossref_primary_10_1017_S0963548399003855
source Cambridge University Press Journals Complete
title Total Path Length for Random Recursive Trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Path%20Length%20for%20Random%20Recursive%20Trees&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=DOBROW,%20ROBERT%20P.&rft.date=1999-07-01&rft.volume=8&rft.issue=4&rft.spage=317&rft.epage=333&rft.pages=317-333&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548399003855&rft_dat=%3Ccambridge_cross%3E10_1017_S0963548399003855%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0963548399003855&rfr_iscdi=true