Optimal approximate minimization of one-letter weighted finite automata

In this paper, we study the approximate minimization problem of weighted finite automata (WFAs): to compute the best possible approximation of a WFA given a bound on the number of states. By reformulating the problem in terms of Hankel matrices, we leverage classical results on the approximation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2024-11, p.1-27
Hauptverfasser: Lacroce, Clara, Balle, Borja, Panangaden, Prakash, Rabusseau, Guillaume
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 1
container_title Mathematical structures in computer science
container_volume
creator Lacroce, Clara
Balle, Borja
Panangaden, Prakash
Rabusseau, Guillaume
description In this paper, we study the approximate minimization problem of weighted finite automata (WFAs): to compute the best possible approximation of a WFA given a bound on the number of states. By reformulating the problem in terms of Hankel matrices, we leverage classical results on the approximation of Hankel operators, namely the celebrated Adamyan-Arov-Krein (AAK) theory. We solve the optimal spectral-norm approximate minimization problem for irredundant WFAs with real weights, defined over a one-letter alphabet. We present a theoretical analysis based on AAK theory and bounds on the quality of the approximation in the spectral norm and $\ell ^2$ norm. Moreover, we provide a closed-form solution, and an algorithm, to compute the optimal approximation of a given size in polynomial time.
doi_str_mv 10.1017/S0960129524000276
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0960129524000276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0960129524000276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-d68fc38924c6a6f953c07784316dde556eabb4fbe1e1bea4be7b3c68d620d76d3</originalsourceid><addsrcrecordid>eNplUMtKxTAUDKJgvfoB7voD0XOaNGmWctGrcOEu1HVJkxON9EUb8fH1tujO1QzMg2EYu0S4QkB9_QhGARamLCQAFFodsQylMrwCXRyzbJX5qp-ys3l-A0CBYDK2O4wpdrbN7ThOw-dCE-Vd7GMXv22KQ58PIR964i2lRFP-QfHlNZHPw-JZrPY9DUvGnrOTYNuZLv5ww57vbp-293x_2D1sb_bcoYbEvaqCE5UppFNWBVMKB1pXUqDynspSkW0aGRpCwoasbEg3wqnKqwK8Vl5sGP72ummY54lCPU7L6OmrRqjXJ-p_T4gf0ZRSgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal approximate minimization of one-letter weighted finite automata</title><source>Cambridge Journals</source><creator>Lacroce, Clara ; Balle, Borja ; Panangaden, Prakash ; Rabusseau, Guillaume</creator><creatorcontrib>Lacroce, Clara ; Balle, Borja ; Panangaden, Prakash ; Rabusseau, Guillaume</creatorcontrib><description>In this paper, we study the approximate minimization problem of weighted finite automata (WFAs): to compute the best possible approximation of a WFA given a bound on the number of states. By reformulating the problem in terms of Hankel matrices, we leverage classical results on the approximation of Hankel operators, namely the celebrated Adamyan-Arov-Krein (AAK) theory. We solve the optimal spectral-norm approximate minimization problem for irredundant WFAs with real weights, defined over a one-letter alphabet. We present a theoretical analysis based on AAK theory and bounds on the quality of the approximation in the spectral norm and $\ell ^2$ norm. Moreover, we provide a closed-form solution, and an algorithm, to compute the optimal approximation of a given size in polynomial time.</description><identifier>ISSN: 0960-1295</identifier><identifier>EISSN: 1469-8072</identifier><identifier>DOI: 10.1017/S0960129524000276</identifier><language>eng</language><ispartof>Mathematical structures in computer science, 2024-11, p.1-27</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-d68fc38924c6a6f953c07784316dde556eabb4fbe1e1bea4be7b3c68d620d76d3</cites><orcidid>0000-0001-8090-2810 ; 0000-0002-2087-7630 ; 0000-0001-8763-6172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Lacroce, Clara</creatorcontrib><creatorcontrib>Balle, Borja</creatorcontrib><creatorcontrib>Panangaden, Prakash</creatorcontrib><creatorcontrib>Rabusseau, Guillaume</creatorcontrib><title>Optimal approximate minimization of one-letter weighted finite automata</title><title>Mathematical structures in computer science</title><description>In this paper, we study the approximate minimization problem of weighted finite automata (WFAs): to compute the best possible approximation of a WFA given a bound on the number of states. By reformulating the problem in terms of Hankel matrices, we leverage classical results on the approximation of Hankel operators, namely the celebrated Adamyan-Arov-Krein (AAK) theory. We solve the optimal spectral-norm approximate minimization problem for irredundant WFAs with real weights, defined over a one-letter alphabet. We present a theoretical analysis based on AAK theory and bounds on the quality of the approximation in the spectral norm and $\ell ^2$ norm. Moreover, we provide a closed-form solution, and an algorithm, to compute the optimal approximation of a given size in polynomial time.</description><issn>0960-1295</issn><issn>1469-8072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplUMtKxTAUDKJgvfoB7voD0XOaNGmWctGrcOEu1HVJkxON9EUb8fH1tujO1QzMg2EYu0S4QkB9_QhGARamLCQAFFodsQylMrwCXRyzbJX5qp-ys3l-A0CBYDK2O4wpdrbN7ThOw-dCE-Vd7GMXv22KQ58PIR964i2lRFP-QfHlNZHPw-JZrPY9DUvGnrOTYNuZLv5ww57vbp-293x_2D1sb_bcoYbEvaqCE5UppFNWBVMKB1pXUqDynspSkW0aGRpCwoasbEg3wqnKqwK8Vl5sGP72ummY54lCPU7L6OmrRqjXJ-p_T4gf0ZRSgQ</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Lacroce, Clara</creator><creator>Balle, Borja</creator><creator>Panangaden, Prakash</creator><creator>Rabusseau, Guillaume</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8090-2810</orcidid><orcidid>https://orcid.org/0000-0002-2087-7630</orcidid><orcidid>https://orcid.org/0000-0001-8763-6172</orcidid></search><sort><creationdate>20241108</creationdate><title>Optimal approximate minimization of one-letter weighted finite automata</title><author>Lacroce, Clara ; Balle, Borja ; Panangaden, Prakash ; Rabusseau, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-d68fc38924c6a6f953c07784316dde556eabb4fbe1e1bea4be7b3c68d620d76d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacroce, Clara</creatorcontrib><creatorcontrib>Balle, Borja</creatorcontrib><creatorcontrib>Panangaden, Prakash</creatorcontrib><creatorcontrib>Rabusseau, Guillaume</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical structures in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacroce, Clara</au><au>Balle, Borja</au><au>Panangaden, Prakash</au><au>Rabusseau, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal approximate minimization of one-letter weighted finite automata</atitle><jtitle>Mathematical structures in computer science</jtitle><date>2024-11-08</date><risdate>2024</risdate><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>0960-1295</issn><eissn>1469-8072</eissn><abstract>In this paper, we study the approximate minimization problem of weighted finite automata (WFAs): to compute the best possible approximation of a WFA given a bound on the number of states. By reformulating the problem in terms of Hankel matrices, we leverage classical results on the approximation of Hankel operators, namely the celebrated Adamyan-Arov-Krein (AAK) theory. We solve the optimal spectral-norm approximate minimization problem for irredundant WFAs with real weights, defined over a one-letter alphabet. We present a theoretical analysis based on AAK theory and bounds on the quality of the approximation in the spectral norm and $\ell ^2$ norm. Moreover, we provide a closed-form solution, and an algorithm, to compute the optimal approximation of a given size in polynomial time.</abstract><doi>10.1017/S0960129524000276</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-8090-2810</orcidid><orcidid>https://orcid.org/0000-0002-2087-7630</orcidid><orcidid>https://orcid.org/0000-0001-8763-6172</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1295
ispartof Mathematical structures in computer science, 2024-11, p.1-27
issn 0960-1295
1469-8072
language eng
recordid cdi_crossref_primary_10_1017_S0960129524000276
source Cambridge Journals
title Optimal approximate minimization of one-letter weighted finite automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A10%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20approximate%20minimization%20of%20one-letter%20weighted%20finite%20automata&rft.jtitle=Mathematical%20structures%20in%20computer%20science&rft.au=Lacroce,%20Clara&rft.date=2024-11-08&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=0960-1295&rft.eissn=1469-8072&rft_id=info:doi/10.1017/S0960129524000276&rft_dat=%3Ccrossref%3E10_1017_S0960129524000276%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true