Exact recovery of community detection in k-community Gaussian mixture models

We study the community detection problem on a Gaussian mixture model, in which vertices are divided into $k\geq 2$ distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied mathematics 2024-09, p.1-33
1. Verfasser: Li, Zhongyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 1
container_title European journal of applied mathematics
container_volume
creator Li, Zhongyang
description We study the community detection problem on a Gaussian mixture model, in which vertices are divided into $k\geq 2$ distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection on hypergraphs.
doi_str_mv 10.1017/S0956792524000263
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0956792524000263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cfa240bc05dc45348752a72d1ff625a7</doaj_id><sourcerecordid>oai_doaj_org_article_cfa240bc05dc45348752a72d1ff625a7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-b196fcbccb0edf161147936c8f9b365528e1c74100ccb8dbc2834bba979cc2473</originalsourceid><addsrcrecordid>eNplkM1KAzEURoMoWKsP4C4vMJr_TJZSai0UXKjrIbmTSGpnIslU2re304ouXF245-MsDkK3lNxRQvX9CzFSacMkE4QQpvgZmlChTCUEk-doMuJq5JfoqpQ1IZQTbSZoNd9ZGHD2kL583uMUMKSu2_Zx2OPWDx6GmHoce_xR_YGF3ZYSbY-7uBu22eMutX5TrtFFsJvib37uFL09zl9nT9XqebGcPawqYFwNlaNGBXAAjvg2UEWp0IYrqINxXEnJak9BC0rIYVK3DljNhXPWaAPAhOZTtDx522TXzWeOnc37JtnYHB8pvzc2DxE2voFgD0UcENmCkFzUWjKrWUtDUEza0UVPLsiplOzDr4-SZkzb_EvLvwEIAWyQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exact recovery of community detection in k-community Gaussian mixture models</title><source>DOAJ Directory of Open Access Journals</source><source>Cambridge University Press Journals Complete</source><creator>Li, Zhongyang</creator><creatorcontrib>Li, Zhongyang</creatorcontrib><description>We study the community detection problem on a Gaussian mixture model, in which vertices are divided into $k\geq 2$ distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection on hypergraphs.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792524000263</identifier><language>eng</language><publisher>Cambridge University Press</publisher><subject>62F12 ; 62H30 ; 68Q25 ; 68W40 ; community detection ; exact recovery ; Gaussian mixture model ; maximum likelihood estimation</subject><ispartof>European journal of applied mathematics, 2024-09, p.1-33</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-b196fcbccb0edf161147936c8f9b365528e1c74100ccb8dbc2834bba979cc2473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Zhongyang</creatorcontrib><title>Exact recovery of community detection in k-community Gaussian mixture models</title><title>European journal of applied mathematics</title><description>We study the community detection problem on a Gaussian mixture model, in which vertices are divided into $k\geq 2$ distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection on hypergraphs.</description><subject>62F12</subject><subject>62H30</subject><subject>68Q25</subject><subject>68W40</subject><subject>community detection</subject><subject>exact recovery</subject><subject>Gaussian mixture model</subject><subject>maximum likelihood estimation</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkM1KAzEURoMoWKsP4C4vMJr_TJZSai0UXKjrIbmTSGpnIslU2re304ouXF245-MsDkK3lNxRQvX9CzFSacMkE4QQpvgZmlChTCUEk-doMuJq5JfoqpQ1IZQTbSZoNd9ZGHD2kL583uMUMKSu2_Zx2OPWDx6GmHoce_xR_YGF3ZYSbY-7uBu22eMutX5TrtFFsJvib37uFL09zl9nT9XqebGcPawqYFwNlaNGBXAAjvg2UEWp0IYrqINxXEnJak9BC0rIYVK3DljNhXPWaAPAhOZTtDx522TXzWeOnc37JtnYHB8pvzc2DxE2voFgD0UcENmCkFzUWjKrWUtDUEza0UVPLsiplOzDr4-SZkzb_EvLvwEIAWyQ</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Li, Zhongyang</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20240918</creationdate><title>Exact recovery of community detection in k-community Gaussian mixture models</title><author>Li, Zhongyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-b196fcbccb0edf161147936c8f9b365528e1c74100ccb8dbc2834bba979cc2473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>62F12</topic><topic>62H30</topic><topic>68Q25</topic><topic>68W40</topic><topic>community detection</topic><topic>exact recovery</topic><topic>Gaussian mixture model</topic><topic>maximum likelihood estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhongyang</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhongyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact recovery of community detection in k-community Gaussian mixture models</atitle><jtitle>European journal of applied mathematics</jtitle><date>2024-09-18</date><risdate>2024</risdate><spage>1</spage><epage>33</epage><pages>1-33</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>We study the community detection problem on a Gaussian mixture model, in which vertices are divided into $k\geq 2$ distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection on hypergraphs.</abstract><pub>Cambridge University Press</pub><doi>10.1017/S0956792524000263</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-7925
ispartof European journal of applied mathematics, 2024-09, p.1-33
issn 0956-7925
1469-4425
language eng
recordid cdi_crossref_primary_10_1017_S0956792524000263
source DOAJ Directory of Open Access Journals; Cambridge University Press Journals Complete
subjects 62F12
62H30
68Q25
68W40
community detection
exact recovery
Gaussian mixture model
maximum likelihood estimation
title Exact recovery of community detection in k-community Gaussian mixture models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20recovery%20of%20community%20detection%20in%20k-community%20Gaussian%20mixture%20models&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=Li,%20Zhongyang&rft.date=2024-09-18&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792524000263&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_cfa240bc05dc45348752a72d1ff625a7%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_cfa240bc05dc45348752a72d1ff625a7&rfr_iscdi=true