Exact recovery of community detection in k-community Gaussian mixture models
We study the community detection problem on a Gaussian mixture model, in which vertices are divided into $k\geq 2$ distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not a...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2024-09, p.1-33 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | European journal of applied mathematics |
container_volume | |
creator | Li, Zhongyang |
description | We study the community detection problem on a Gaussian mixture model, in which vertices are divided into
$k\geq 2$
distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection on hypergraphs. |
doi_str_mv | 10.1017/S0956792524000263 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0956792524000263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cfa240bc05dc45348752a72d1ff625a7</doaj_id><sourcerecordid>oai_doaj_org_article_cfa240bc05dc45348752a72d1ff625a7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-b196fcbccb0edf161147936c8f9b365528e1c74100ccb8dbc2834bba979cc2473</originalsourceid><addsrcrecordid>eNplkM1KAzEURoMoWKsP4C4vMJr_TJZSai0UXKjrIbmTSGpnIslU2re304ouXF245-MsDkK3lNxRQvX9CzFSacMkE4QQpvgZmlChTCUEk-doMuJq5JfoqpQ1IZQTbSZoNd9ZGHD2kL583uMUMKSu2_Zx2OPWDx6GmHoce_xR_YGF3ZYSbY-7uBu22eMutX5TrtFFsJvib37uFL09zl9nT9XqebGcPawqYFwNlaNGBXAAjvg2UEWp0IYrqINxXEnJak9BC0rIYVK3DljNhXPWaAPAhOZTtDx522TXzWeOnc37JtnYHB8pvzc2DxE2voFgD0UcENmCkFzUWjKrWUtDUEza0UVPLsiplOzDr4-SZkzb_EvLvwEIAWyQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exact recovery of community detection in k-community Gaussian mixture models</title><source>DOAJ Directory of Open Access Journals</source><source>Cambridge University Press Journals Complete</source><creator>Li, Zhongyang</creator><creatorcontrib>Li, Zhongyang</creatorcontrib><description>We study the community detection problem on a Gaussian mixture model, in which vertices are divided into
$k\geq 2$
distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection on hypergraphs.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792524000263</identifier><language>eng</language><publisher>Cambridge University Press</publisher><subject>62F12 ; 62H30 ; 68Q25 ; 68W40 ; community detection ; exact recovery ; Gaussian mixture model ; maximum likelihood estimation</subject><ispartof>European journal of applied mathematics, 2024-09, p.1-33</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-b196fcbccb0edf161147936c8f9b365528e1c74100ccb8dbc2834bba979cc2473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Zhongyang</creatorcontrib><title>Exact recovery of community detection in k-community Gaussian mixture models</title><title>European journal of applied mathematics</title><description>We study the community detection problem on a Gaussian mixture model, in which vertices are divided into
$k\geq 2$
distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection on hypergraphs.</description><subject>62F12</subject><subject>62H30</subject><subject>68Q25</subject><subject>68W40</subject><subject>community detection</subject><subject>exact recovery</subject><subject>Gaussian mixture model</subject><subject>maximum likelihood estimation</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkM1KAzEURoMoWKsP4C4vMJr_TJZSai0UXKjrIbmTSGpnIslU2re304ouXF245-MsDkK3lNxRQvX9CzFSacMkE4QQpvgZmlChTCUEk-doMuJq5JfoqpQ1IZQTbSZoNd9ZGHD2kL583uMUMKSu2_Zx2OPWDx6GmHoce_xR_YGF3ZYSbY-7uBu22eMutX5TrtFFsJvib37uFL09zl9nT9XqebGcPawqYFwNlaNGBXAAjvg2UEWp0IYrqINxXEnJak9BC0rIYVK3DljNhXPWaAPAhOZTtDx522TXzWeOnc37JtnYHB8pvzc2DxE2voFgD0UcENmCkFzUWjKrWUtDUEza0UVPLsiplOzDr4-SZkzb_EvLvwEIAWyQ</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Li, Zhongyang</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20240918</creationdate><title>Exact recovery of community detection in k-community Gaussian mixture models</title><author>Li, Zhongyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-b196fcbccb0edf161147936c8f9b365528e1c74100ccb8dbc2834bba979cc2473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>62F12</topic><topic>62H30</topic><topic>68Q25</topic><topic>68W40</topic><topic>community detection</topic><topic>exact recovery</topic><topic>Gaussian mixture model</topic><topic>maximum likelihood estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhongyang</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhongyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact recovery of community detection in k-community Gaussian mixture models</atitle><jtitle>European journal of applied mathematics</jtitle><date>2024-09-18</date><risdate>2024</risdate><spage>1</spage><epage>33</epage><pages>1-33</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>We study the community detection problem on a Gaussian mixture model, in which vertices are divided into
$k\geq 2$
distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the necessary and sufficient conditions for the exact recovery of the maximum likelihood estimation, which can give a sharp phase transition for the exact recovery even though the Gaussian perturbations are not identically distributed; see Section 7. Applications include the community detection on hypergraphs.</abstract><pub>Cambridge University Press</pub><doi>10.1017/S0956792524000263</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-7925 |
ispartof | European journal of applied mathematics, 2024-09, p.1-33 |
issn | 0956-7925 1469-4425 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0956792524000263 |
source | DOAJ Directory of Open Access Journals; Cambridge University Press Journals Complete |
subjects | 62F12 62H30 68Q25 68W40 community detection exact recovery Gaussian mixture model maximum likelihood estimation |
title | Exact recovery of community detection in k-community Gaussian mixture models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20recovery%20of%20community%20detection%20in%20k-community%20Gaussian%20mixture%20models&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=Li,%20Zhongyang&rft.date=2024-09-18&rft.spage=1&rft.epage=33&rft.pages=1-33&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792524000263&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_cfa240bc05dc45348752a72d1ff625a7%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_cfa240bc05dc45348752a72d1ff625a7&rfr_iscdi=true |