Operators in finite distributive subspace lattices, I

The purpose of this paper is to settle in the negative an open problem in operator theory, which asks whether in a finite distributive subspace lattice ℒ on a Hilbert space, every finite rank operator of Alg ℒ can be written as a finite sum of rank one operators from Alg ℒ. The counter-example const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 1993-01, Vol.113 (1), p.141-146
1. Verfasser: Spanoudakis, N. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 141
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 113
creator Spanoudakis, N. K.
description The purpose of this paper is to settle in the negative an open problem in operator theory, which asks whether in a finite distributive subspace lattice ℒ on a Hilbert space, every finite rank operator of Alg ℒ can be written as a finite sum of rank one operators from Alg ℒ. The counter-example constructed is on a specific Hilbert space realization of the free distributive lattice on three generators and the operator which fails the above property has rank two.
doi_str_mv 10.1017/S0305004100075824
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0305004100075824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004100075824</cupid><sourcerecordid>10_1017_S0305004100075824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-94bec64b41147d89260ccd03884b1c40033759cea663e353e2a9f4984155fa9c3</originalsourceid><addsrcrecordid>eNp9j0tLAzEUhYMoWKs_wN0sXDqaTG4yyVKKfUChSH0sQyaTkdR2ZkhS0X9vaks3gqu7OOdcvg-ha4LvCCbl_RJTzDAGgjEumSjgBA0IcJkLzOEUDXZxvsvP0UUIq9SikuABYoveeh07HzLXZo1rXbRZ7UL0rtpG92mzsK1Cr43N1jpGZ2y4zWaX6KzR62CvDneIXsaPz6NpPl9MZqOHeW6KksRcQmUNhwoIgbIWsuDYmBpTIaAiBhIDLZk0VnNOLWXUFlo2IAUQxhotDR0isv9rfBeCt43qvdto_60IVjtv9cc7bW72m14Ho9eN161x4TgEziT81vJ9Lbnar2Os_YfiZcJSfPKk3l7FlBdLUOPUpwcUvam8q9-tWnVb3yb9f2B-AM9Sc_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Operators in finite distributive subspace lattices, I</title><source>Cambridge University Press Journals Complete</source><creator>Spanoudakis, N. K.</creator><creatorcontrib>Spanoudakis, N. K.</creatorcontrib><description>The purpose of this paper is to settle in the negative an open problem in operator theory, which asks whether in a finite distributive subspace lattice ℒ on a Hilbert space, every finite rank operator of Alg ℒ can be written as a finite sum of rank one operators from Alg ℒ. The counter-example constructed is on a specific Hilbert space realization of the free distributive lattice on three generators and the operator which fails the above property has rank two.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004100075824</identifier><identifier>CODEN: MPCPCO</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Operator theory ; Sciences and techniques of general use</subject><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 1993-01, Vol.113 (1), p.141-146</ispartof><rights>Copyright © Cambridge Philosophical Society 1993</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-94bec64b41147d89260ccd03884b1c40033759cea663e353e2a9f4984155fa9c3</citedby><cites>FETCH-LOGICAL-c271t-94bec64b41147d89260ccd03884b1c40033759cea663e353e2a9f4984155fa9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004100075824/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,4024,27923,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4659424$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Spanoudakis, N. K.</creatorcontrib><title>Operators in finite distributive subspace lattices, I</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>The purpose of this paper is to settle in the negative an open problem in operator theory, which asks whether in a finite distributive subspace lattice ℒ on a Hilbert space, every finite rank operator of Alg ℒ can be written as a finite sum of rank one operators from Alg ℒ. The counter-example constructed is on a specific Hilbert space realization of the free distributive lattice on three generators and the operator which fails the above property has rank two.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operator theory</subject><subject>Sciences and techniques of general use</subject><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLAzEUhYMoWKs_wN0sXDqaTG4yyVKKfUChSH0sQyaTkdR2ZkhS0X9vaks3gqu7OOdcvg-ha4LvCCbl_RJTzDAGgjEumSjgBA0IcJkLzOEUDXZxvsvP0UUIq9SikuABYoveeh07HzLXZo1rXbRZ7UL0rtpG92mzsK1Cr43N1jpGZ2y4zWaX6KzR62CvDneIXsaPz6NpPl9MZqOHeW6KksRcQmUNhwoIgbIWsuDYmBpTIaAiBhIDLZk0VnNOLWXUFlo2IAUQxhotDR0isv9rfBeCt43qvdto_60IVjtv9cc7bW72m14Ho9eN161x4TgEziT81vJ9Lbnar2Os_YfiZcJSfPKk3l7FlBdLUOPUpwcUvam8q9-tWnVb3yb9f2B-AM9Sc_0</recordid><startdate>199301</startdate><enddate>199301</enddate><creator>Spanoudakis, N. K.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199301</creationdate><title>Operators in finite distributive subspace lattices, I</title><author>Spanoudakis, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-94bec64b41147d89260ccd03884b1c40033759cea663e353e2a9f4984155fa9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operator theory</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spanoudakis, N. K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spanoudakis, N. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operators in finite distributive subspace lattices, I</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>1993-01</date><risdate>1993</risdate><volume>113</volume><issue>1</issue><spage>141</spage><epage>146</epage><pages>141-146</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><coden>MPCPCO</coden><abstract>The purpose of this paper is to settle in the negative an open problem in operator theory, which asks whether in a finite distributive subspace lattice ℒ on a Hilbert space, every finite rank operator of Alg ℒ can be written as a finite sum of rank one operators from Alg ℒ. The counter-example constructed is on a specific Hilbert space realization of the free distributive lattice on three generators and the operator which fails the above property has rank two.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004100075824</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 1993-01, Vol.113 (1), p.141-146
issn 0305-0041
1469-8064
language eng
recordid cdi_crossref_primary_10_1017_S0305004100075824
source Cambridge University Press Journals Complete
subjects Exact sciences and technology
Mathematical analysis
Mathematics
Operator theory
Sciences and techniques of general use
title Operators in finite distributive subspace lattices, I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operators%20in%20finite%20distributive%20subspace%20lattices,%20I&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=Spanoudakis,%20N.%20K.&rft.date=1993-01&rft.volume=113&rft.issue=1&rft.spage=141&rft.epage=146&rft.pages=141-146&rft.issn=0305-0041&rft.eissn=1469-8064&rft.coden=MPCPCO&rft_id=info:doi/10.1017/S0305004100075824&rft_dat=%3Ccambridge_cross%3E10_1017_S0305004100075824%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0305004100075824&rfr_iscdi=true