A torus reduction theorem for regular coverings of 3-manifolds by homology 3-spheres
For any regular covering p:M→M of 3-dimensional manifolds M, M with M a homology 3-sphere we construct a regular covering p′: M′ → M′ of 3-manifolds M′, M′ with the same group of covering transformations and a degree 1 map f:M → M′ so that M′ is a homology 3-sphere, M′ (and hence M′) is irreducible...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 1991-01, Vol.109 (1), p.117-124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any regular covering p:M→M of 3-dimensional manifolds M, M with M a homology 3-sphere we construct a regular covering p′: M′ → M′ of 3-manifolds M′, M′ with the same group of covering transformations and a degree 1 map f:M → M′ so that M′ is a homology 3-sphere, M′ (and hence M′) is irreducible and does not contain incompressible tori, and the regular covering p:M→M is induced from the regular covering p′: M′ → M′ by the map f. Assuming Thurston's geometrization conjecture it follows that M′ (and hence M′) is either hyperbolic or Seifert fibred. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004100069607 |