A torus reduction theorem for regular coverings of 3-manifolds by homology 3-spheres

For any regular covering p:M→M of 3-dimensional manifolds M, M with M a homology 3-sphere we construct a regular covering p′: M′ → M′ of 3-manifolds M′, M′ with the same group of covering transformations and a degree 1 map f:M → M′ so that M′ is a homology 3-sphere, M′ (and hence M′) is irreducible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 1991-01, Vol.109 (1), p.117-124
Hauptverfasser: Luft, E., Sjerve, D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any regular covering p:M→M of 3-dimensional manifolds M, M with M a homology 3-sphere we construct a regular covering p′: M′ → M′ of 3-manifolds M′, M′ with the same group of covering transformations and a degree 1 map f:M → M′ so that M′ is a homology 3-sphere, M′ (and hence M′) is irreducible and does not contain incompressible tori, and the regular covering p:M→M is induced from the regular covering p′: M′ → M′ by the map f. Assuming Thurston's geometrization conjecture it follows that M′ (and hence M′) is either hyperbolic or Seifert fibred.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004100069607