Quantum groups and representations of monoidal categories

This paper is intended to make explicit some aspects of the interactions which have recently come to light between the theory of classical knots and links, the theory of monoidal categories, Hopf-algebra theory, quantum integrable systems, the theory of exactly solvable models in statistical mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 1990-09, Vol.108 (2), p.261-290
1. Verfasser: Yettera, David N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is intended to make explicit some aspects of the interactions which have recently come to light between the theory of classical knots and links, the theory of monoidal categories, Hopf-algebra theory, quantum integrable systems, the theory of exactly solvable models in statistical mechanics, and quantum field theories. The main results herein show an intimate relation between representations of certain monoidal categories arising from the study of new knot invariants or from physical considerations and quantum groups (that is, Hopf algebras). In particular categories of modules and comodules over Hopf algebras would seem to be much more fundamental examples of monoidal categories than might at first be apparent. This fundamental role of Hopf algebras in monoidal categories theory is also manifest in the Tannaka duality theory of Deligne and Mime [8a], although the relationship of that result and the present work is less clear than might be hoped.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004100069139