A prime strongly positive amphicheiral knot which is not slice
We begin by giving several definitions. A knot K in S3 is said to be amphicheiral if there is an orientation-reversing diffeomorphism h of S3 which leaves K setwise invariant. Suppose, in addition, that K is given an orientation. Then K is said to be positive amphicheiral if h preserves the orientat...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 1986-11, Vol.100 (3), p.533-537 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 537 |
---|---|
container_issue | 3 |
container_start_page | 533 |
container_title | Mathematical proceedings of the Cambridge Philosophical Society |
container_volume | 100 |
creator | Flapan, Erica |
description | We begin by giving several definitions. A knot K in S3 is said to be amphicheiral if there is an orientation-reversing diffeomorphism h of S3 which leaves K setwise invariant. Suppose, in addition, that K is given an orientation. Then K is said to be positive amphicheiral if h preserves the orientation of K. If, in addition, the diffeomorphism h is an involution then K is strongly positive amphicheiral. Finally, we say a knot is slice if it bounds a smooth disc in B4. In this note we shall give a smooth example of a prime strongly positive amphicheiral knot which is not slice. |
doi_str_mv | 10.1017/S0305004100066263 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0305004100066263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004100066263</cupid><sourcerecordid>10_1017_S0305004100066263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-edef71f6189ae154661fe325479ba6ef9ac2c4334b7fb5d926824ea4bc89b1463</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4Ab_kDq_naZHMRarFVKIqo55BNX9q0292SrNr-e3dp8SJ4egwz8-a9QeiakhtKqLp9I5zkhAhKCJGSSX6CBlRInRVEilM06Oms58_RRUqrTsU1JQN0N8LbGDaAUxubelHt8bZJoQ1fgO1muwxuCSHaCq_rpsXfPcYh4R6kKji4RGfeVgmujnOIPiYP7-PHbPYyfRqPZpnjTLUZzMEr6iUttAWaCympB85yoXRpJXhtHXOCc1EqX-ZzzWTBBFhRukKX3Rt8iOhhr4tNShG86a-2cW8oMX0B5k8BnSc7eEJqYfdrsHFtpOIqN3L6aph6nuTifmwmnZ4fM-ymjGG-ALNqPmPd_fVPyg_oCmuT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A prime strongly positive amphicheiral knot which is not slice</title><source>Cambridge Journals</source><creator>Flapan, Erica</creator><creatorcontrib>Flapan, Erica</creatorcontrib><description>We begin by giving several definitions. A knot K in S3 is said to be amphicheiral if there is an orientation-reversing diffeomorphism h of S3 which leaves K setwise invariant. Suppose, in addition, that K is given an orientation. Then K is said to be positive amphicheiral if h preserves the orientation of K. If, in addition, the diffeomorphism h is an involution then K is strongly positive amphicheiral. Finally, we say a knot is slice if it bounds a smooth disc in B4. In this note we shall give a smooth example of a prime strongly positive amphicheiral knot which is not slice.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004100066263</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 1986-11, Vol.100 (3), p.533-537</ispartof><rights>Copyright © Cambridge Philosophical Society 1986</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-edef71f6189ae154661fe325479ba6ef9ac2c4334b7fb5d926824ea4bc89b1463</citedby><cites>FETCH-LOGICAL-c327t-edef71f6189ae154661fe325479ba6ef9ac2c4334b7fb5d926824ea4bc89b1463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004100066263/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Flapan, Erica</creatorcontrib><title>A prime strongly positive amphicheiral knot which is not slice</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>We begin by giving several definitions. A knot K in S3 is said to be amphicheiral if there is an orientation-reversing diffeomorphism h of S3 which leaves K setwise invariant. Suppose, in addition, that K is given an orientation. Then K is said to be positive amphicheiral if h preserves the orientation of K. If, in addition, the diffeomorphism h is an involution then K is strongly positive amphicheiral. Finally, we say a knot is slice if it bounds a smooth disc in B4. In this note we shall give a smooth example of a prime strongly positive amphicheiral knot which is not slice.</description><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4Ab_kDq_naZHMRarFVKIqo55BNX9q0292SrNr-e3dp8SJ4egwz8-a9QeiakhtKqLp9I5zkhAhKCJGSSX6CBlRInRVEilM06Oms58_RRUqrTsU1JQN0N8LbGDaAUxubelHt8bZJoQ1fgO1muwxuCSHaCq_rpsXfPcYh4R6kKji4RGfeVgmujnOIPiYP7-PHbPYyfRqPZpnjTLUZzMEr6iUttAWaCympB85yoXRpJXhtHXOCc1EqX-ZzzWTBBFhRukKX3Rt8iOhhr4tNShG86a-2cW8oMX0B5k8BnSc7eEJqYfdrsHFtpOIqN3L6aph6nuTifmwmnZ4fM-ymjGG-ALNqPmPd_fVPyg_oCmuT</recordid><startdate>19861101</startdate><enddate>19861101</enddate><creator>Flapan, Erica</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19861101</creationdate><title>A prime strongly positive amphicheiral knot which is not slice</title><author>Flapan, Erica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-edef71f6189ae154661fe325479ba6ef9ac2c4334b7fb5d926824ea4bc89b1463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flapan, Erica</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flapan, Erica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A prime strongly positive amphicheiral knot which is not slice</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>1986-11-01</date><risdate>1986</risdate><volume>100</volume><issue>3</issue><spage>533</spage><epage>537</epage><pages>533-537</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>We begin by giving several definitions. A knot K in S3 is said to be amphicheiral if there is an orientation-reversing diffeomorphism h of S3 which leaves K setwise invariant. Suppose, in addition, that K is given an orientation. Then K is said to be positive amphicheiral if h preserves the orientation of K. If, in addition, the diffeomorphism h is an involution then K is strongly positive amphicheiral. Finally, we say a knot is slice if it bounds a smooth disc in B4. In this note we shall give a smooth example of a prime strongly positive amphicheiral knot which is not slice.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004100066263</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0041 |
ispartof | Mathematical proceedings of the Cambridge Philosophical Society, 1986-11, Vol.100 (3), p.533-537 |
issn | 0305-0041 1469-8064 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0305004100066263 |
source | Cambridge Journals |
title | A prime strongly positive amphicheiral knot which is not slice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20prime%20strongly%20positive%20amphicheiral%20knot%20which%20is%20not%20slice&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=Flapan,%20Erica&rft.date=1986-11-01&rft.volume=100&rft.issue=3&rft.spage=533&rft.epage=537&rft.pages=533-537&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004100066263&rft_dat=%3Ccambridge_cross%3E10_1017_S0305004100066263%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0305004100066263&rfr_iscdi=true |