A Principle in classical mechanics with a ‘relativistic’ path-element extending the principle of least action

1. A particle with mass m and coordinates x1x2, x3 relative to a set of rectangular axes fixed in Newtonian space is moving in a field of conservative forces with a potential energy V(x1, x2, x3) and a kinetic energy The equations of motion, written (representing the three equations i = l, i = 2, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 1955-07, Vol.51 (3), p.469-475
1. Verfasser: Schieldrop, Edgar B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue 3
container_start_page 469
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 51
creator Schieldrop, Edgar B.
description 1. A particle with mass m and coordinates x1x2, x3 relative to a set of rectangular axes fixed in Newtonian space is moving in a field of conservative forces with a potential energy V(x1, x2, x3) and a kinetic energy The equations of motion, written (representing the three equations i = l, i = 2, i = 3 in a way to be used in this paper), constitute, as they stand, a sufficient condition in order to ensure in the sense that the Hamiltonian integral has a stationary value if the actual motion is compared with neighbouring motions with the same terminal positions and the same terminal values of the time as in the actual motion.
doi_str_mv 10.1017/S0305004100030474
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0305004100030474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004100030474</cupid><sourcerecordid>10_1017_S0305004100030474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-9cf9485709375325a911ea7c76a49f6e98017755d840445fe41aacd7667bdc4d3</originalsourceid><addsrcrecordid>eNp9UEtOwzAQtRBIlMIB2PkCAZs4cbxsKyhIFR_x2VpTZ9K45FNiA2XXY8D1ehISteoGidWM9Ob9hpBTzs444_L8kYUsYkxwxtpNSLFHelzEKkhYLPZJr4ODDj8kR87NuyvFWY-8Deh9YytjFwVSW1FTgHPWQEFLNDlU1jj6aX1Oga5X3w0W4O2Hdd6a9eqHLsDnARZYYuUpLj1Wqa1m1OdIFzvVOqMFgvMUjLd1dUwOMigcnmxnnzxfXT6NroPJ3fhmNJgEhivhA2UyJZJIMhXKKLyIQHGOII2MQagsRpW0tWUUpYlgQkQZCg5gUhnHcpoakYZ9wje6pqmdazDTbaQSmi_Nme5-pv_8rOUEG07bEJc7AjSvOpZtDh2PHzSXk9vxCx_qYXsfbj2gnDY2naGe1-9N1fb6x-UXX0p_jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Principle in classical mechanics with a ‘relativistic’ path-element extending the principle of least action</title><source>Cambridge University Press Journals Complete</source><creator>Schieldrop, Edgar B.</creator><creatorcontrib>Schieldrop, Edgar B.</creatorcontrib><description>1. A particle with mass m and coordinates x1x2, x3 relative to a set of rectangular axes fixed in Newtonian space is moving in a field of conservative forces with a potential energy V(x1, x2, x3) and a kinetic energy The equations of motion, written (representing the three equations i = l, i = 2, i = 3 in a way to be used in this paper), constitute, as they stand, a sufficient condition in order to ensure in the sense that the Hamiltonian integral has a stationary value if the actual motion is compared with neighbouring motions with the same terminal positions and the same terminal values of the time as in the actual motion.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004100030474</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 1955-07, Vol.51 (3), p.469-475</ispartof><rights>Copyright © Cambridge Philosophical Society 1955</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004100030474/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Schieldrop, Edgar B.</creatorcontrib><title>A Principle in classical mechanics with a ‘relativistic’ path-element extending the principle of least action</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>1. A particle with mass m and coordinates x1x2, x3 relative to a set of rectangular axes fixed in Newtonian space is moving in a field of conservative forces with a potential energy V(x1, x2, x3) and a kinetic energy The equations of motion, written (representing the three equations i = l, i = 2, i = 3 in a way to be used in this paper), constitute, as they stand, a sufficient condition in order to ensure in the sense that the Hamiltonian integral has a stationary value if the actual motion is compared with neighbouring motions with the same terminal positions and the same terminal values of the time as in the actual motion.</description><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1955</creationdate><recordtype>article</recordtype><recordid>eNp9UEtOwzAQtRBIlMIB2PkCAZs4cbxsKyhIFR_x2VpTZ9K45FNiA2XXY8D1ehISteoGidWM9Ob9hpBTzs444_L8kYUsYkxwxtpNSLFHelzEKkhYLPZJr4ODDj8kR87NuyvFWY-8Deh9YytjFwVSW1FTgHPWQEFLNDlU1jj6aX1Oga5X3w0W4O2Hdd6a9eqHLsDnARZYYuUpLj1Wqa1m1OdIFzvVOqMFgvMUjLd1dUwOMigcnmxnnzxfXT6NroPJ3fhmNJgEhivhA2UyJZJIMhXKKLyIQHGOII2MQagsRpW0tWUUpYlgQkQZCg5gUhnHcpoakYZ9wje6pqmdazDTbaQSmi_Nme5-pv_8rOUEG07bEJc7AjSvOpZtDh2PHzSXk9vxCx_qYXsfbj2gnDY2naGe1-9N1fb6x-UXX0p_jg</recordid><startdate>195507</startdate><enddate>195507</enddate><creator>Schieldrop, Edgar B.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>195507</creationdate><title>A Principle in classical mechanics with a ‘relativistic’ path-element extending the principle of least action</title><author>Schieldrop, Edgar B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-9cf9485709375325a911ea7c76a49f6e98017755d840445fe41aacd7667bdc4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1955</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schieldrop, Edgar B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schieldrop, Edgar B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Principle in classical mechanics with a ‘relativistic’ path-element extending the principle of least action</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>1955-07</date><risdate>1955</risdate><volume>51</volume><issue>3</issue><spage>469</spage><epage>475</epage><pages>469-475</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>1. A particle with mass m and coordinates x1x2, x3 relative to a set of rectangular axes fixed in Newtonian space is moving in a field of conservative forces with a potential energy V(x1, x2, x3) and a kinetic energy The equations of motion, written (representing the three equations i = l, i = 2, i = 3 in a way to be used in this paper), constitute, as they stand, a sufficient condition in order to ensure in the sense that the Hamiltonian integral has a stationary value if the actual motion is compared with neighbouring motions with the same terminal positions and the same terminal values of the time as in the actual motion.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004100030474</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 1955-07, Vol.51 (3), p.469-475
issn 0305-0041
1469-8064
language eng
recordid cdi_crossref_primary_10_1017_S0305004100030474
source Cambridge University Press Journals Complete
title A Principle in classical mechanics with a ‘relativistic’ path-element extending the principle of least action
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Principle%20in%20classical%20mechanics%20with%20a%20%E2%80%98relativistic%E2%80%99%20path-element%20extending%20the%20principle%20of%20least%20action&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=Schieldrop,%20Edgar%20B.&rft.date=1955-07&rft.volume=51&rft.issue=3&rft.spage=469&rft.epage=475&rft.pages=469-475&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004100030474&rft_dat=%3Ccambridge_cross%3E10_1017_S0305004100030474%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0305004100030474&rfr_iscdi=true