On the number of real roots of a random algebraic equation. II

An equation with real coefficients and given degree n being selected at random, about how many real roots may it be expected to have? The present series of papers is concerned with this question and matters arising out of it. The results we have arrived at were stated without proof in our paper I (w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 1939-04, Vol.35 (2), p.133-148
Hauptverfasser: Littlewood, J. E., Offord, A. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 2
container_start_page 133
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 35
creator Littlewood, J. E.
Offord, A. C.
description An equation with real coefficients and given degree n being selected at random, about how many real roots may it be expected to have? The present series of papers is concerned with this question and matters arising out of it. The results we have arrived at were stated without proof in our paper I (with the same general title), which contains also some introductory remarks to which we may refer the interested reader. Here we summarize as follows.
doi_str_mv 10.1017/S0305004100020855
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0305004100020855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004100020855</cupid><sourcerecordid>10_1017_S0305004100020855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d39383d571355c1424d81b459adfd5f04869b15b48be1e454ee1084f369b3da13</originalsourceid><addsrcrecordid>eNp9UE1Lw0AQXUTBWv0B3vYPpM50P7K5CFJsLbYUUS-9LLvZTU1tEt1NQf-9CS1eBC8zzLz35jGPkGuEEQKmN8_AQABwBIAxKCFOyAC5zBIFkp-SQQ8nPX5OLmLcdiyWIQzI7aqm7Zun9b6yPtCmoMGbHQ1N08Z-MjSY2jUVNbuNt8GUOfWfe9OWTT2i8_klOSvMLvqrYx-S1-n9y-QhWaxm88ndIslZxtrEdVUxJ1JkQuTIx9wptFxkxhVOFMCVzCwKy5X16Lng3iMoXrBuzZxBNiR4uJuHJsbgC_0RysqEb42g-wD0nwA6TXLQlLH1X78CE961TFkqtJw96el6uZysH6WWHZ8dPUxlQ-k2Xm-bfai7v_5x-QHIP2nC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the number of real roots of a random algebraic equation. II</title><source>Cambridge University Press Journals Complete</source><creator>Littlewood, J. E. ; Offord, A. C.</creator><creatorcontrib>Littlewood, J. E. ; Offord, A. C.</creatorcontrib><description>An equation with real coefficients and given degree n being selected at random, about how many real roots may it be expected to have? The present series of papers is concerned with this question and matters arising out of it. The results we have arrived at were stated without proof in our paper I (with the same general title), which contains also some introductory remarks to which we may refer the interested reader. Here we summarize as follows.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004100020855</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 1939-04, Vol.35 (2), p.133-148</ispartof><rights>Copyright © Cambridge Philosophical Society 1939</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d39383d571355c1424d81b459adfd5f04869b15b48be1e454ee1084f369b3da13</citedby><cites>FETCH-LOGICAL-c393t-d39383d571355c1424d81b459adfd5f04869b15b48be1e454ee1084f369b3da13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004100020855/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27911,27912,55615</link.rule.ids></links><search><creatorcontrib>Littlewood, J. E.</creatorcontrib><creatorcontrib>Offord, A. C.</creatorcontrib><title>On the number of real roots of a random algebraic equation. II</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>An equation with real coefficients and given degree n being selected at random, about how many real roots may it be expected to have? The present series of papers is concerned with this question and matters arising out of it. The results we have arrived at were stated without proof in our paper I (with the same general title), which contains also some introductory remarks to which we may refer the interested reader. Here we summarize as follows.</description><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1939</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AQXUTBWv0B3vYPpM50P7K5CFJsLbYUUS-9LLvZTU1tEt1NQf-9CS1eBC8zzLz35jGPkGuEEQKmN8_AQABwBIAxKCFOyAC5zBIFkp-SQQ8nPX5OLmLcdiyWIQzI7aqm7Zun9b6yPtCmoMGbHQ1N08Z-MjSY2jUVNbuNt8GUOfWfe9OWTT2i8_klOSvMLvqrYx-S1-n9y-QhWaxm88ndIslZxtrEdVUxJ1JkQuTIx9wptFxkxhVOFMCVzCwKy5X16Lng3iMoXrBuzZxBNiR4uJuHJsbgC_0RysqEb42g-wD0nwA6TXLQlLH1X78CE961TFkqtJw96el6uZysH6WWHZ8dPUxlQ-k2Xm-bfai7v_5x-QHIP2nC</recordid><startdate>193904</startdate><enddate>193904</enddate><creator>Littlewood, J. E.</creator><creator>Offord, A. C.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>193904</creationdate><title>On the number of real roots of a random algebraic equation. II</title><author>Littlewood, J. E. ; Offord, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d39383d571355c1424d81b459adfd5f04869b15b48be1e454ee1084f369b3da13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1939</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Littlewood, J. E.</creatorcontrib><creatorcontrib>Offord, A. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Littlewood, J. E.</au><au>Offord, A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the number of real roots of a random algebraic equation. II</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>1939-04</date><risdate>1939</risdate><volume>35</volume><issue>2</issue><spage>133</spage><epage>148</epage><pages>133-148</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>An equation with real coefficients and given degree n being selected at random, about how many real roots may it be expected to have? The present series of papers is concerned with this question and matters arising out of it. The results we have arrived at were stated without proof in our paper I (with the same general title), which contains also some introductory remarks to which we may refer the interested reader. Here we summarize as follows.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004100020855</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 1939-04, Vol.35 (2), p.133-148
issn 0305-0041
1469-8064
language eng
recordid cdi_crossref_primary_10_1017_S0305004100020855
source Cambridge University Press Journals Complete
title On the number of real roots of a random algebraic equation. II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20number%20of%20real%20roots%20of%20a%20random%20algebraic%20equation.%20II&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=Littlewood,%20J.%20E.&rft.date=1939-04&rft.volume=35&rft.issue=2&rft.spage=133&rft.epage=148&rft.pages=133-148&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004100020855&rft_dat=%3Ccambridge_cross%3E10_1017_S0305004100020855%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0305004100020855&rfr_iscdi=true