On the number of real roots of a random algebraic equation. II
An equation with real coefficients and given degree n being selected at random, about how many real roots may it be expected to have? The present series of papers is concerned with this question and matters arising out of it. The results we have arrived at were stated without proof in our paper I (w...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 1939-04, Vol.35 (2), p.133-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 2 |
container_start_page | 133 |
container_title | Mathematical proceedings of the Cambridge Philosophical Society |
container_volume | 35 |
creator | Littlewood, J. E. Offord, A. C. |
description | An equation with real coefficients and given degree n being selected at random, about how many real roots may it be expected to have? The present series of papers is concerned with this question and matters arising out of it. The results we have arrived at were stated without proof in our paper I (with the same general title), which contains also some introductory remarks to which we may refer the interested reader. Here we summarize as follows. |
doi_str_mv | 10.1017/S0305004100020855 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0305004100020855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004100020855</cupid><sourcerecordid>10_1017_S0305004100020855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d39383d571355c1424d81b459adfd5f04869b15b48be1e454ee1084f369b3da13</originalsourceid><addsrcrecordid>eNp9UE1Lw0AQXUTBWv0B3vYPpM50P7K5CFJsLbYUUS-9LLvZTU1tEt1NQf-9CS1eBC8zzLz35jGPkGuEEQKmN8_AQABwBIAxKCFOyAC5zBIFkp-SQQ8nPX5OLmLcdiyWIQzI7aqm7Zun9b6yPtCmoMGbHQ1N08Z-MjSY2jUVNbuNt8GUOfWfe9OWTT2i8_klOSvMLvqrYx-S1-n9y-QhWaxm88ndIslZxtrEdVUxJ1JkQuTIx9wptFxkxhVOFMCVzCwKy5X16Lng3iMoXrBuzZxBNiR4uJuHJsbgC_0RysqEb42g-wD0nwA6TXLQlLH1X78CE961TFkqtJw96el6uZysH6WWHZ8dPUxlQ-k2Xm-bfai7v_5x-QHIP2nC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the number of real roots of a random algebraic equation. II</title><source>Cambridge University Press Journals Complete</source><creator>Littlewood, J. E. ; Offord, A. C.</creator><creatorcontrib>Littlewood, J. E. ; Offord, A. C.</creatorcontrib><description>An equation with real coefficients and given degree n being selected at random, about how many real roots may it be expected to have? The present series of papers is concerned with this question and matters arising out of it. The results we have arrived at were stated without proof in our paper I (with the same general title), which contains also some introductory remarks to which we may refer the interested reader. Here we summarize as follows.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004100020855</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 1939-04, Vol.35 (2), p.133-148</ispartof><rights>Copyright © Cambridge Philosophical Society 1939</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d39383d571355c1424d81b459adfd5f04869b15b48be1e454ee1084f369b3da13</citedby><cites>FETCH-LOGICAL-c393t-d39383d571355c1424d81b459adfd5f04869b15b48be1e454ee1084f369b3da13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004100020855/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27911,27912,55615</link.rule.ids></links><search><creatorcontrib>Littlewood, J. E.</creatorcontrib><creatorcontrib>Offord, A. C.</creatorcontrib><title>On the number of real roots of a random algebraic equation. II</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>An equation with real coefficients and given degree n being selected at random, about how many real roots may it be expected to have? The present series of papers is concerned with this question and matters arising out of it. The results we have arrived at were stated without proof in our paper I (with the same general title), which contains also some introductory remarks to which we may refer the interested reader. Here we summarize as follows.</description><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1939</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AQXUTBWv0B3vYPpM50P7K5CFJsLbYUUS-9LLvZTU1tEt1NQf-9CS1eBC8zzLz35jGPkGuEEQKmN8_AQABwBIAxKCFOyAC5zBIFkp-SQQ8nPX5OLmLcdiyWIQzI7aqm7Zun9b6yPtCmoMGbHQ1N08Z-MjSY2jUVNbuNt8GUOfWfe9OWTT2i8_klOSvMLvqrYx-S1-n9y-QhWaxm88ndIslZxtrEdVUxJ1JkQuTIx9wptFxkxhVOFMCVzCwKy5X16Lng3iMoXrBuzZxBNiR4uJuHJsbgC_0RysqEb42g-wD0nwA6TXLQlLH1X78CE961TFkqtJw96el6uZysH6WWHZ8dPUxlQ-k2Xm-bfai7v_5x-QHIP2nC</recordid><startdate>193904</startdate><enddate>193904</enddate><creator>Littlewood, J. E.</creator><creator>Offord, A. C.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>193904</creationdate><title>On the number of real roots of a random algebraic equation. II</title><author>Littlewood, J. E. ; Offord, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d39383d571355c1424d81b459adfd5f04869b15b48be1e454ee1084f369b3da13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1939</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Littlewood, J. E.</creatorcontrib><creatorcontrib>Offord, A. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Littlewood, J. E.</au><au>Offord, A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the number of real roots of a random algebraic equation. II</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>1939-04</date><risdate>1939</risdate><volume>35</volume><issue>2</issue><spage>133</spage><epage>148</epage><pages>133-148</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>An equation with real coefficients and given degree n being selected at random, about how many real roots may it be expected to have? The present series of papers is concerned with this question and matters arising out of it. The results we have arrived at were stated without proof in our paper I (with the same general title), which contains also some introductory remarks to which we may refer the interested reader. Here we summarize as follows.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004100020855</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0041 |
ispartof | Mathematical proceedings of the Cambridge Philosophical Society, 1939-04, Vol.35 (2), p.133-148 |
issn | 0305-0041 1469-8064 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0305004100020855 |
source | Cambridge University Press Journals Complete |
title | On the number of real roots of a random algebraic equation. II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20number%20of%20real%20roots%20of%20a%20random%20algebraic%20equation.%20II&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=Littlewood,%20J.%20E.&rft.date=1939-04&rft.volume=35&rft.issue=2&rft.spage=133&rft.epage=148&rft.pages=133-148&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004100020855&rft_dat=%3Ccambridge_cross%3E10_1017_S0305004100020855%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0305004100020855&rfr_iscdi=true |