Mathematical models of cladogenesis
The evolutionary pattern of speciation and extinction in any biologic group may be described by a variety of mathematical models. These models provide a framework for describing the history of taxonomic diversity (clade shape) and other aspects of larger evolutionary patterns. The simplest model ass...
Gespeichert in:
Veröffentlicht in: | Paleobiology 1985-01, Vol.11 (1), p.42-52 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | Paleobiology |
container_volume | 11 |
creator | Raup, David M. |
description | The evolutionary pattern of speciation and extinction in any biologic group may be described by a variety of mathematical models. These models provide a framework for describing the history of taxonomic diversity (clade shape) and other aspects of larger evolutionary patterns. The simplest model assumes time homogeneity: that is, speciation and extinction probabilities are constant through time and within taxonomic groups. In some cases the homogeneous model provides a good fit to real world paleontological data, but in other cases the model serves only as a null hypothesis that must be rejected before more complex models can be applied. In cases where the homogeneous model does not fit the data, time-inhomogeneous models can be formulated that specify change, regular or episodic, in speciation and extinction probabilities. An appendix provides a list of the most useful equations based on the homogeneous model. |
doi_str_mv | 10.1017/S0094837300011386 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0094837300011386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0094837300011386</cupid><jstor_id>2400422</jstor_id><sourcerecordid>2400422</sourcerecordid><originalsourceid>FETCH-LOGICAL-a401t-54a63f0089831a5891421d5962324559fc7513efcf98c83e6fef1ee1271549023</originalsourceid><addsrcrecordid>eNp9j09LxDAQR4MoWFc_gOCh4Lk6k0na5CiL_2DFg3ousZ2sLe1Gknrw27tlFy-Cpzn85j14QpwjXCFgdf0CYJWhigAAkUx5IDK0ZApNhIcim-di3o_FSUr99svqssrE5ZObPnh0U9e4IR9Dy0PKg8-bwbVhzRtOXToVR94Nic_2dyHe7m5flw_F6vn-cXmzKpwCnAqtXEkewFhD6LSxqCS22paSpNLa-qbSSOwbb01jiEvPHplRVqiVBUkLgTtvE0NKkX39GbvRxe8aoZ4r6z-VW-Zix_RpCvEXkApAyVlJe6Ub32PXrrnuw1fcbDP-kf4AModa3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mathematical models of cladogenesis</title><source>Jstor Complete Legacy</source><creator>Raup, David M.</creator><creatorcontrib>Raup, David M.</creatorcontrib><description>The evolutionary pattern of speciation and extinction in any biologic group may be described by a variety of mathematical models. These models provide a framework for describing the history of taxonomic diversity (clade shape) and other aspects of larger evolutionary patterns. The simplest model assumes time homogeneity: that is, speciation and extinction probabilities are constant through time and within taxonomic groups. In some cases the homogeneous model provides a good fit to real world paleontological data, but in other cases the model serves only as a null hypothesis that must be rejected before more complex models can be applied. In cases where the homogeneous model does not fit the data, time-inhomogeneous models can be formulated that specify change, regular or episodic, in speciation and extinction probabilities. An appendix provides a list of the most useful equations based on the homogeneous model.</description><identifier>ISSN: 0094-8373</identifier><identifier>EISSN: 1938-5331</identifier><identifier>DOI: 10.1017/S0094837300011386</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Biological taxonomies ; Evolution ; Extinct species ; Geology ; Mass extinction events ; Mathematical constants ; Natural selection ; Paleobiology ; Speciation ; Species extinction</subject><ispartof>Paleobiology, 1985-01, Vol.11 (1), p.42-52</ispartof><rights>Copyright © The Paleontological Society</rights><rights>Copyright 1985 The Paleontological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a401t-54a63f0089831a5891421d5962324559fc7513efcf98c83e6fef1ee1271549023</citedby><cites>FETCH-LOGICAL-a401t-54a63f0089831a5891421d5962324559fc7513efcf98c83e6fef1ee1271549023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2400422$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2400422$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Raup, David M.</creatorcontrib><title>Mathematical models of cladogenesis</title><title>Paleobiology</title><addtitle>Paleobiology</addtitle><description>The evolutionary pattern of speciation and extinction in any biologic group may be described by a variety of mathematical models. These models provide a framework for describing the history of taxonomic diversity (clade shape) and other aspects of larger evolutionary patterns. The simplest model assumes time homogeneity: that is, speciation and extinction probabilities are constant through time and within taxonomic groups. In some cases the homogeneous model provides a good fit to real world paleontological data, but in other cases the model serves only as a null hypothesis that must be rejected before more complex models can be applied. In cases where the homogeneous model does not fit the data, time-inhomogeneous models can be formulated that specify change, regular or episodic, in speciation and extinction probabilities. An appendix provides a list of the most useful equations based on the homogeneous model.</description><subject>Biological taxonomies</subject><subject>Evolution</subject><subject>Extinct species</subject><subject>Geology</subject><subject>Mass extinction events</subject><subject>Mathematical constants</subject><subject>Natural selection</subject><subject>Paleobiology</subject><subject>Speciation</subject><subject>Species extinction</subject><issn>0094-8373</issn><issn>1938-5331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9j09LxDAQR4MoWFc_gOCh4Lk6k0na5CiL_2DFg3ousZ2sLe1Gknrw27tlFy-Cpzn85j14QpwjXCFgdf0CYJWhigAAkUx5IDK0ZApNhIcim-di3o_FSUr99svqssrE5ZObPnh0U9e4IR9Dy0PKg8-bwbVhzRtOXToVR94Nic_2dyHe7m5flw_F6vn-cXmzKpwCnAqtXEkewFhD6LSxqCS22paSpNLa-qbSSOwbb01jiEvPHplRVqiVBUkLgTtvE0NKkX39GbvRxe8aoZ4r6z-VW-Zix_RpCvEXkApAyVlJe6Ub32PXrrnuw1fcbDP-kf4AModa3g</recordid><startdate>19850101</startdate><enddate>19850101</enddate><creator>Raup, David M.</creator><general>Cambridge University Press</general><general>Paleontological Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19850101</creationdate><title>Mathematical models of cladogenesis</title><author>Raup, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a401t-54a63f0089831a5891421d5962324559fc7513efcf98c83e6fef1ee1271549023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Biological taxonomies</topic><topic>Evolution</topic><topic>Extinct species</topic><topic>Geology</topic><topic>Mass extinction events</topic><topic>Mathematical constants</topic><topic>Natural selection</topic><topic>Paleobiology</topic><topic>Speciation</topic><topic>Species extinction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raup, David M.</creatorcontrib><collection>CrossRef</collection><jtitle>Paleobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raup, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical models of cladogenesis</atitle><jtitle>Paleobiology</jtitle><addtitle>Paleobiology</addtitle><date>1985-01-01</date><risdate>1985</risdate><volume>11</volume><issue>1</issue><spage>42</spage><epage>52</epage><pages>42-52</pages><issn>0094-8373</issn><eissn>1938-5331</eissn><abstract>The evolutionary pattern of speciation and extinction in any biologic group may be described by a variety of mathematical models. These models provide a framework for describing the history of taxonomic diversity (clade shape) and other aspects of larger evolutionary patterns. The simplest model assumes time homogeneity: that is, speciation and extinction probabilities are constant through time and within taxonomic groups. In some cases the homogeneous model provides a good fit to real world paleontological data, but in other cases the model serves only as a null hypothesis that must be rejected before more complex models can be applied. In cases where the homogeneous model does not fit the data, time-inhomogeneous models can be formulated that specify change, regular or episodic, in speciation and extinction probabilities. An appendix provides a list of the most useful equations based on the homogeneous model.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0094837300011386</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8373 |
ispartof | Paleobiology, 1985-01, Vol.11 (1), p.42-52 |
issn | 0094-8373 1938-5331 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0094837300011386 |
source | Jstor Complete Legacy |
subjects | Biological taxonomies Evolution Extinct species Geology Mass extinction events Mathematical constants Natural selection Paleobiology Speciation Species extinction |
title | Mathematical models of cladogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20models%20of%20cladogenesis&rft.jtitle=Paleobiology&rft.au=Raup,%20David%20M.&rft.date=1985-01-01&rft.volume=11&rft.issue=1&rft.spage=42&rft.epage=52&rft.pages=42-52&rft.issn=0094-8373&rft.eissn=1938-5331&rft_id=info:doi/10.1017/S0094837300011386&rft_dat=%3Cjstor_cross%3E2400422%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0094837300011386&rft_jstor_id=2400422&rfr_iscdi=true |