Non-Local Convection Models for Stellar Atmospheres and Envelopes

We present an overview of the concepts underlying advanced non-local Reynolds stress models of turbulent convection and review a comparison of this approach with a series of numerical simulations of fully compressible convection. We then discuss results from applications of the model to complete env...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symposium - International Astronomical Union 2003, Vol.210, p.143-156
1. Verfasser: Kupka, F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue
container_start_page 143
container_title Symposium - International Astronomical Union
container_volume 210
creator Kupka, F.
description We present an overview of the concepts underlying advanced non-local Reynolds stress models of turbulent convection and review a comparison of this approach with a series of numerical simulations of fully compressible convection. We then discuss results from applications of the model to complete envelopes of A-type main sequence stars. The non-local model reproduces surface velocities in agreement with the lower limit of observed macro- and microturbulence velocities of A-star photospheres, the asymmetry of the surface velocity field as inferred from spectral line profiles, and the overall structure of the photospheric and subphotospheric convection zones, as predicted by the most recent numerical simulations available for these stars. Traditionally, local models of convection are unable to do so. We conclude with a brief survey of extensions of the model which are interesting for other applications such as atmospheres of solar type stars and overshooting below deep convective envelopes or above the core in massive stars.
doi_str_mv 10.1017/S0074180900133327
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0074180900133327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0074180900133327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-7f315559b443fa4801bc0e1825e05ad05b0b66fbe2351f965b9cd846be0cb0fc3</originalsourceid><addsrcrecordid>eNplj81KxDAUhbNQcBjnAdzlBar3NkmbLksZf6DqYnRdkvQGRzJNSYrg2ztFd64OfOdw4GPsBuEWAeu7A0AtUUMDgEKIsr5gmxUVK7tiu5w_4Vwp3WiNG9a-xKnoozOBd3H6Ircc48Sf40ghcx8TPywUgkm8XU4xzx-UKHMzjXx_Hoc4U75ml96ETLu_3LL3-_1b91j0rw9PXdsXrkS9FLUXqJRqrJTCG6kBrQNCXSoCZUZQFmxVeUulUOibStnGjVpWlsBZ8E5sGf7-uhRzTuSHOR1PJn0PCMOqPvxTFz8Dyk1F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-Local Convection Models for Stellar Atmospheres and Envelopes</title><source>Alma/SFX Local Collection</source><creator>Kupka, F.</creator><creatorcontrib>Kupka, F.</creatorcontrib><description>We present an overview of the concepts underlying advanced non-local Reynolds stress models of turbulent convection and review a comparison of this approach with a series of numerical simulations of fully compressible convection. We then discuss results from applications of the model to complete envelopes of A-type main sequence stars. The non-local model reproduces surface velocities in agreement with the lower limit of observed macro- and microturbulence velocities of A-star photospheres, the asymmetry of the surface velocity field as inferred from spectral line profiles, and the overall structure of the photospheric and subphotospheric convection zones, as predicted by the most recent numerical simulations available for these stars. Traditionally, local models of convection are unable to do so. We conclude with a brief survey of extensions of the model which are interesting for other applications such as atmospheres of solar type stars and overshooting below deep convective envelopes or above the core in massive stars.</description><identifier>ISSN: 0074-1809</identifier><identifier>DOI: 10.1017/S0074180900133327</identifier><language>eng</language><ispartof>Symposium - International Astronomical Union, 2003, Vol.210, p.143-156</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-7f315559b443fa4801bc0e1825e05ad05b0b66fbe2351f965b9cd846be0cb0fc3</citedby><cites>FETCH-LOGICAL-c218t-7f315559b443fa4801bc0e1825e05ad05b0b66fbe2351f965b9cd846be0cb0fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Kupka, F.</creatorcontrib><title>Non-Local Convection Models for Stellar Atmospheres and Envelopes</title><title>Symposium - International Astronomical Union</title><description>We present an overview of the concepts underlying advanced non-local Reynolds stress models of turbulent convection and review a comparison of this approach with a series of numerical simulations of fully compressible convection. We then discuss results from applications of the model to complete envelopes of A-type main sequence stars. The non-local model reproduces surface velocities in agreement with the lower limit of observed macro- and microturbulence velocities of A-star photospheres, the asymmetry of the surface velocity field as inferred from spectral line profiles, and the overall structure of the photospheric and subphotospheric convection zones, as predicted by the most recent numerical simulations available for these stars. Traditionally, local models of convection are unable to do so. We conclude with a brief survey of extensions of the model which are interesting for other applications such as atmospheres of solar type stars and overshooting below deep convective envelopes or above the core in massive stars.</description><issn>0074-1809</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNplj81KxDAUhbNQcBjnAdzlBar3NkmbLksZf6DqYnRdkvQGRzJNSYrg2ztFd64OfOdw4GPsBuEWAeu7A0AtUUMDgEKIsr5gmxUVK7tiu5w_4Vwp3WiNG9a-xKnoozOBd3H6Ircc48Sf40ghcx8TPywUgkm8XU4xzx-UKHMzjXx_Hoc4U75ml96ETLu_3LL3-_1b91j0rw9PXdsXrkS9FLUXqJRqrJTCG6kBrQNCXSoCZUZQFmxVeUulUOibStnGjVpWlsBZ8E5sGf7-uhRzTuSHOR1PJn0PCMOqPvxTFz8Dyk1F</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Kupka, F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2003</creationdate><title>Non-Local Convection Models for Stellar Atmospheres and Envelopes</title><author>Kupka, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-7f315559b443fa4801bc0e1825e05ad05b0b66fbe2351f965b9cd846be0cb0fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kupka, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Symposium - International Astronomical Union</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kupka, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Local Convection Models for Stellar Atmospheres and Envelopes</atitle><jtitle>Symposium - International Astronomical Union</jtitle><date>2003</date><risdate>2003</risdate><volume>210</volume><spage>143</spage><epage>156</epage><pages>143-156</pages><issn>0074-1809</issn><abstract>We present an overview of the concepts underlying advanced non-local Reynolds stress models of turbulent convection and review a comparison of this approach with a series of numerical simulations of fully compressible convection. We then discuss results from applications of the model to complete envelopes of A-type main sequence stars. The non-local model reproduces surface velocities in agreement with the lower limit of observed macro- and microturbulence velocities of A-star photospheres, the asymmetry of the surface velocity field as inferred from spectral line profiles, and the overall structure of the photospheric and subphotospheric convection zones, as predicted by the most recent numerical simulations available for these stars. Traditionally, local models of convection are unable to do so. We conclude with a brief survey of extensions of the model which are interesting for other applications such as atmospheres of solar type stars and overshooting below deep convective envelopes or above the core in massive stars.</abstract><doi>10.1017/S0074180900133327</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0074-1809
ispartof Symposium - International Astronomical Union, 2003, Vol.210, p.143-156
issn 0074-1809
language eng
recordid cdi_crossref_primary_10_1017_S0074180900133327
source Alma/SFX Local Collection
title Non-Local Convection Models for Stellar Atmospheres and Envelopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Local%20Convection%20Models%20for%20Stellar%20Atmospheres%20and%20Envelopes&rft.jtitle=Symposium%20-%20International%20Astronomical%20Union&rft.au=Kupka,%20F.&rft.date=2003&rft.volume=210&rft.spage=143&rft.epage=156&rft.pages=143-156&rft.issn=0074-1809&rft_id=info:doi/10.1017/S0074180900133327&rft_dat=%3Ccrossref%3E10_1017_S0074180900133327%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true