Pushing the Limits of AMS Radiocarbon Dating with Improved Bayesian Data Analysis

We present an improved version of the continuous autoregressive (CAR) model, a Bayesian data analysis model for accelerator mass spectrometry (AMS). Measurement error is taken to be Poisson-distributed, improving the analysis for samples with only a few counts. This, in turn, enables pushing the lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiocarbon 2007, Vol.49 (3), p.1261-1272
Hauptverfasser: Palonen, V, Tikkanen, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1272
container_issue 3
container_start_page 1261
container_title Radiocarbon
container_volume 49
creator Palonen, V
Tikkanen, P
description We present an improved version of the continuous autoregressive (CAR) model, a Bayesian data analysis model for accelerator mass spectrometry (AMS). Measurement error is taken to be Poisson-distributed, improving the analysis for samples with only a few counts. This, in turn, enables pushing the limit of radiocarbon measurements to lower concentrations. On the computational side, machine drift is described with a vector of parameters, and hence the user can examine the probable shape of the trend. The model is compared to the conventional mean-based (MB) method, with simulated measurements representing a typical run of a modern AMS machine and a run with very old samples. In both comparisons, CAR has better precision, gives much more stable uncertainties, and is slightly more accurate. Finally, some results are given from Helsinki AMS measurements of background sample materials, with natural diamonds among them.
doi_str_mv 10.1017/S0033822200043174
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0033822200043174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0033822200043174</cupid><sourcerecordid>10_1017_S0033822200043174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-9e62cd9758b775d93a12f0ac1f74f24f951396001185d150f4fd1c30547de4233</originalsourceid><addsrcrecordid>eNp9kEtPAjEUhRujiYj-AHfduBy9tw86s8Q3CcYHup6UPqCEmSHtoOHfywhxY-LqLr7zneQeQs4RLhFQXU0AOM8ZYwAgOCpxQHpYCJlJJeUh6XU46_gxOUlpAcBwkKseeX1Zp3moZ7SdOzoOVWgTbTwdPk3om7ahMTpOm5re6rYLfYV2TkfVKjafztJrvXEp6B-q6bDWy00K6ZQceb1M7mx_--Tj_u795jEbPz-MbobjzPABa7PCDZixhZL5VClpC66RedAGvRKeCV9I5MUAADGXFiV44S0aDlIo6wTjvE9w12tik1J0vlzFUOm4KRHKbpPyzyZb52LnrHQyeumjrk1IvyIDxvNC4TbH9926msZgZ65cNOu4_TD90_4NbKpueQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pushing the Limits of AMS Radiocarbon Dating with Improved Bayesian Data Analysis</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>Cambridge University Press Journals Complete</source><creator>Palonen, V ; Tikkanen, P</creator><creatorcontrib>Palonen, V ; Tikkanen, P</creatorcontrib><description>We present an improved version of the continuous autoregressive (CAR) model, a Bayesian data analysis model for accelerator mass spectrometry (AMS). Measurement error is taken to be Poisson-distributed, improving the analysis for samples with only a few counts. This, in turn, enables pushing the limit of radiocarbon measurements to lower concentrations. On the computational side, machine drift is described with a vector of parameters, and hence the user can examine the probable shape of the trend. The model is compared to the conventional mean-based (MB) method, with simulated measurements representing a typical run of a modern AMS machine and a run with very old samples. In both comparisons, CAR has better precision, gives much more stable uncertainties, and is slightly more accurate. Finally, some results are given from Helsinki AMS measurements of background sample materials, with natural diamonds among them.</description><identifier>ISSN: 0033-8222</identifier><identifier>EISSN: 1945-5755</identifier><identifier>DOI: 10.1017/S0033822200043174</identifier><language>eng</language><publisher>New York, US: Cambridge University Press</publisher><subject>Dating ; Excavation and methods ; Laboratory methods ; Methodology and general studies ; Prehistory and protohistory</subject><ispartof>Radiocarbon, 2007, Vol.49 (3), p.1261-1272</ispartof><rights>Copyright © 2007 by the Arizona Board of Regents on behalf of the University of Arizona</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-9e62cd9758b775d93a12f0ac1f74f24f951396001185d150f4fd1c30547de4233</citedby><cites>FETCH-LOGICAL-c362t-9e62cd9758b775d93a12f0ac1f74f24f951396001185d150f4fd1c30547de4233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033822200043174/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,4025,27928,27929,27930,55633</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20238971$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Palonen, V</creatorcontrib><creatorcontrib>Tikkanen, P</creatorcontrib><title>Pushing the Limits of AMS Radiocarbon Dating with Improved Bayesian Data Analysis</title><title>Radiocarbon</title><addtitle>Radiocarbon</addtitle><description>We present an improved version of the continuous autoregressive (CAR) model, a Bayesian data analysis model for accelerator mass spectrometry (AMS). Measurement error is taken to be Poisson-distributed, improving the analysis for samples with only a few counts. This, in turn, enables pushing the limit of radiocarbon measurements to lower concentrations. On the computational side, machine drift is described with a vector of parameters, and hence the user can examine the probable shape of the trend. The model is compared to the conventional mean-based (MB) method, with simulated measurements representing a typical run of a modern AMS machine and a run with very old samples. In both comparisons, CAR has better precision, gives much more stable uncertainties, and is slightly more accurate. Finally, some results are given from Helsinki AMS measurements of background sample materials, with natural diamonds among them.</description><subject>Dating</subject><subject>Excavation and methods</subject><subject>Laboratory methods</subject><subject>Methodology and general studies</subject><subject>Prehistory and protohistory</subject><issn>0033-8222</issn><issn>1945-5755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAjEUhRujiYj-AHfduBy9tw86s8Q3CcYHup6UPqCEmSHtoOHfywhxY-LqLr7zneQeQs4RLhFQXU0AOM8ZYwAgOCpxQHpYCJlJJeUh6XU46_gxOUlpAcBwkKseeX1Zp3moZ7SdOzoOVWgTbTwdPk3om7ahMTpOm5re6rYLfYV2TkfVKjafztJrvXEp6B-q6bDWy00K6ZQceb1M7mx_--Tj_u795jEbPz-MbobjzPABa7PCDZixhZL5VClpC66RedAGvRKeCV9I5MUAADGXFiV44S0aDlIo6wTjvE9w12tik1J0vlzFUOm4KRHKbpPyzyZb52LnrHQyeumjrk1IvyIDxvNC4TbH9926msZgZ65cNOu4_TD90_4NbKpueQ</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Palonen, V</creator><creator>Tikkanen, P</creator><general>Cambridge University Press</general><general>University of Arizona</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2007</creationdate><title>Pushing the Limits of AMS Radiocarbon Dating with Improved Bayesian Data Analysis</title><author>Palonen, V ; Tikkanen, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-9e62cd9758b775d93a12f0ac1f74f24f951396001185d150f4fd1c30547de4233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Dating</topic><topic>Excavation and methods</topic><topic>Laboratory methods</topic><topic>Methodology and general studies</topic><topic>Prehistory and protohistory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palonen, V</creatorcontrib><creatorcontrib>Tikkanen, P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Radiocarbon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palonen, V</au><au>Tikkanen, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pushing the Limits of AMS Radiocarbon Dating with Improved Bayesian Data Analysis</atitle><jtitle>Radiocarbon</jtitle><addtitle>Radiocarbon</addtitle><date>2007</date><risdate>2007</risdate><volume>49</volume><issue>3</issue><spage>1261</spage><epage>1272</epage><pages>1261-1272</pages><issn>0033-8222</issn><eissn>1945-5755</eissn><abstract>We present an improved version of the continuous autoregressive (CAR) model, a Bayesian data analysis model for accelerator mass spectrometry (AMS). Measurement error is taken to be Poisson-distributed, improving the analysis for samples with only a few counts. This, in turn, enables pushing the limit of radiocarbon measurements to lower concentrations. On the computational side, machine drift is described with a vector of parameters, and hence the user can examine the probable shape of the trend. The model is compared to the conventional mean-based (MB) method, with simulated measurements representing a typical run of a modern AMS machine and a run with very old samples. In both comparisons, CAR has better precision, gives much more stable uncertainties, and is slightly more accurate. Finally, some results are given from Helsinki AMS measurements of background sample materials, with natural diamonds among them.</abstract><cop>New York, US</cop><pub>Cambridge University Press</pub><doi>10.1017/S0033822200043174</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-8222
ispartof Radiocarbon, 2007, Vol.49 (3), p.1261-1272
issn 0033-8222
1945-5755
language eng
recordid cdi_crossref_primary_10_1017_S0033822200043174
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; Cambridge University Press Journals Complete
subjects Dating
Excavation and methods
Laboratory methods
Methodology and general studies
Prehistory and protohistory
title Pushing the Limits of AMS Radiocarbon Dating with Improved Bayesian Data Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pushing%20the%20Limits%20of%20AMS%20Radiocarbon%20Dating%20with%20Improved%20Bayesian%20Data%20Analysis&rft.jtitle=Radiocarbon&rft.au=Palonen,%20V&rft.date=2007&rft.volume=49&rft.issue=3&rft.spage=1261&rft.epage=1272&rft.pages=1261-1272&rft.issn=0033-8222&rft.eissn=1945-5755&rft_id=info:doi/10.1017/S0033822200043174&rft_dat=%3Ccambridge_cross%3E10_1017_S0033822200043174%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0033822200043174&rfr_iscdi=true