One-dimensional multifluid plasma models. Part 1. Fundamentals
This paper is concerned with one-dimensional and time-dependent multifluid plasma models derived from multifluid MHD equations. In order to reduce the number of equations to be solved, the impurities are described in the framework of the average ion approach without restricting the impurity densitie...
Gespeichert in:
Veröffentlicht in: | Journal of plasma physics 1999-05, Vol.61 (4), p.645-667 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 667 |
---|---|
container_issue | 4 |
container_start_page | 645 |
container_title | Journal of plasma physics |
container_volume | 61 |
creator | BACHMANN, P. SÜNDER, D. |
description | This paper is concerned with one-dimensional and time-dependent multifluid
plasma models derived from multifluid MHD equations. In order to reduce the
number of equations to be solved, the impurities are described in the framework
of the average ion approach without restricting the impurity densities to be small
compared with the hydrogen plasma density. Equalizing the plasma temperatures
and adopting the condition of quasineutrality, we arrive at a three-fluid description
of a current-carrying plasma, and analyse the ability of the self-consistent system of
model equations thus obtained to support stationary solutions in a moving frame.
This system is reduced to a currentless plasma description assuming at first different
flow velocities of the particles and then a currentless, streaming plasma where
all particles move with the same velocity. Introducing Lagrangian coordinates and
adopting an equation of state, a single reaction–diffusion equation (RDE) for the
temperature is obtained. The impurity density, which affects the radiation loss term
and the heat conduction coefficient of the RDE, has to be calculated as a function
of the temperature by solving additionally a first-order differential equation. This
is demonstrated for carbon and high-Z impurities. |
doi_str_mv | 10.1017/S002237789900762X |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S002237789900762X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S002237789900762X</cupid><sourcerecordid>10_1017_S002237789900762X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-af955e9634aed7beacb29a3420b0c3bdd850105b4a13f5ecfe3d2e0a5b3d0deb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKs_wNsevKa-2Ww2uxdBqm3FQisqeAtvNllJ3Y-S7IL-e7e06EHwNIeZZxiGkEsGEwZMXj8DxDGXMstzAJnGb0dkxJI0pzIDeUxGO5vu_FNyFsIGADjEckRuVo2lxtW2Ca5tsIrqvupcWfXORNsKQ41R3RpbhUm0Rt9FbBLN-sbgAHRYhXNyUg5iLw46Jq-z-5fpgi5X84fp7ZIWXCQdxTIXwuYpT9AaqS0WOs6RJzFoKLg2JhPAQOgEGS-FLUrLTWwBheYGjNV8TNi-t_BtCN6Wautdjf5LMVC7A9SfAwbmas9sMRRYlR6bwoVfMMuTLEuGGN3HXOjs54-N_kOlkkuh0vmTyu4kXz-upVoMeX6YgrX2zrxbtWl7P3wX_hnzDbOoebE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>One-dimensional multifluid plasma models. Part 1. Fundamentals</title><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>BACHMANN, P. ; SÜNDER, D.</creator><creatorcontrib>BACHMANN, P. ; SÜNDER, D.</creatorcontrib><description>This paper is concerned with one-dimensional and time-dependent multifluid
plasma models derived from multifluid MHD equations. In order to reduce the
number of equations to be solved, the impurities are described in the framework
of the average ion approach without restricting the impurity densities to be small
compared with the hydrogen plasma density. Equalizing the plasma temperatures
and adopting the condition of quasineutrality, we arrive at a three-fluid description
of a current-carrying plasma, and analyse the ability of the self-consistent system of
model equations thus obtained to support stationary solutions in a moving frame.
This system is reduced to a currentless plasma description assuming at first different
flow velocities of the particles and then a currentless, streaming plasma where
all particles move with the same velocity. Introducing Lagrangian coordinates and
adopting an equation of state, a single reaction–diffusion equation (RDE) for the
temperature is obtained. The impurity density, which affects the radiation loss term
and the heat conduction coefficient of the RDE, has to be calculated as a function
of the temperature by solving additionally a first-order differential equation. This
is demonstrated for carbon and high-Z impurities.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S002237789900762X</identifier><identifier>CODEN: JPLPBZ</identifier><language>eng</language><publisher>London: Cambridge University Press</publisher><subject>Exact sciences and technology ; Impurities in plasmas ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma production and heating ; Plasma properties ; Plasma sources ; Transport properties</subject><ispartof>Journal of plasma physics, 1999-05, Vol.61 (4), p.645-667</ispartof><rights>1999 Cambridge University Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-af955e9634aed7beacb29a3420b0c3bdd850105b4a13f5ecfe3d2e0a5b3d0deb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002237789900762X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27929,27930,55633</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1894884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BACHMANN, P.</creatorcontrib><creatorcontrib>SÜNDER, D.</creatorcontrib><title>One-dimensional multifluid plasma models. Part 1. Fundamentals</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>This paper is concerned with one-dimensional and time-dependent multifluid
plasma models derived from multifluid MHD equations. In order to reduce the
number of equations to be solved, the impurities are described in the framework
of the average ion approach without restricting the impurity densities to be small
compared with the hydrogen plasma density. Equalizing the plasma temperatures
and adopting the condition of quasineutrality, we arrive at a three-fluid description
of a current-carrying plasma, and analyse the ability of the self-consistent system of
model equations thus obtained to support stationary solutions in a moving frame.
This system is reduced to a currentless plasma description assuming at first different
flow velocities of the particles and then a currentless, streaming plasma where
all particles move with the same velocity. Introducing Lagrangian coordinates and
adopting an equation of state, a single reaction–diffusion equation (RDE) for the
temperature is obtained. The impurity density, which affects the radiation loss term
and the heat conduction coefficient of the RDE, has to be calculated as a function
of the temperature by solving additionally a first-order differential equation. This
is demonstrated for carbon and high-Z impurities.</description><subject>Exact sciences and technology</subject><subject>Impurities in plasmas</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma production and heating</subject><subject>Plasma properties</subject><subject>Plasma sources</subject><subject>Transport properties</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWKs_wNsevKa-2Ww2uxdBqm3FQisqeAtvNllJ3Y-S7IL-e7e06EHwNIeZZxiGkEsGEwZMXj8DxDGXMstzAJnGb0dkxJI0pzIDeUxGO5vu_FNyFsIGADjEckRuVo2lxtW2Ca5tsIrqvupcWfXORNsKQ41R3RpbhUm0Rt9FbBLN-sbgAHRYhXNyUg5iLw46Jq-z-5fpgi5X84fp7ZIWXCQdxTIXwuYpT9AaqS0WOs6RJzFoKLg2JhPAQOgEGS-FLUrLTWwBheYGjNV8TNi-t_BtCN6Wautdjf5LMVC7A9SfAwbmas9sMRRYlR6bwoVfMMuTLEuGGN3HXOjs54-N_kOlkkuh0vmTyu4kXz-upVoMeX6YgrX2zrxbtWl7P3wX_hnzDbOoebE</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>BACHMANN, P.</creator><creator>SÜNDER, D.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990501</creationdate><title>One-dimensional multifluid plasma models. Part 1. Fundamentals</title><author>BACHMANN, P. ; SÜNDER, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-af955e9634aed7beacb29a3420b0c3bdd850105b4a13f5ecfe3d2e0a5b3d0deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Impurities in plasmas</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma production and heating</topic><topic>Plasma properties</topic><topic>Plasma sources</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BACHMANN, P.</creatorcontrib><creatorcontrib>SÜNDER, D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BACHMANN, P.</au><au>SÜNDER, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional multifluid plasma models. Part 1. Fundamentals</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>1999-05-01</date><risdate>1999</risdate><volume>61</volume><issue>4</issue><spage>645</spage><epage>667</epage><pages>645-667</pages><issn>0022-3778</issn><eissn>1469-7807</eissn><coden>JPLPBZ</coden><abstract>This paper is concerned with one-dimensional and time-dependent multifluid
plasma models derived from multifluid MHD equations. In order to reduce the
number of equations to be solved, the impurities are described in the framework
of the average ion approach without restricting the impurity densities to be small
compared with the hydrogen plasma density. Equalizing the plasma temperatures
and adopting the condition of quasineutrality, we arrive at a three-fluid description
of a current-carrying plasma, and analyse the ability of the self-consistent system of
model equations thus obtained to support stationary solutions in a moving frame.
This system is reduced to a currentless plasma description assuming at first different
flow velocities of the particles and then a currentless, streaming plasma where
all particles move with the same velocity. Introducing Lagrangian coordinates and
adopting an equation of state, a single reaction–diffusion equation (RDE) for the
temperature is obtained. The impurity density, which affects the radiation loss term
and the heat conduction coefficient of the RDE, has to be calculated as a function
of the temperature by solving additionally a first-order differential equation. This
is demonstrated for carbon and high-Z impurities.</abstract><cop>London</cop><pub>Cambridge University Press</pub><doi>10.1017/S002237789900762X</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3778 |
ispartof | Journal of plasma physics, 1999-05, Vol.61 (4), p.645-667 |
issn | 0022-3778 1469-7807 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S002237789900762X |
source | Cambridge Journals - Connect here FIRST to enable access |
subjects | Exact sciences and technology Impurities in plasmas Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma production and heating Plasma properties Plasma sources Transport properties |
title | One-dimensional multifluid plasma models. Part 1. Fundamentals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20multifluid%20plasma%20models.%20Part%201.%20Fundamentals&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=BACHMANN,%20P.&rft.date=1999-05-01&rft.volume=61&rft.issue=4&rft.spage=645&rft.epage=667&rft.pages=645-667&rft.issn=0022-3778&rft.eissn=1469-7807&rft.coden=JPLPBZ&rft_id=info:doi/10.1017/S002237789900762X&rft_dat=%3Ccambridge_cross%3E10_1017_S002237789900762X%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S002237789900762X&rfr_iscdi=true |