One-dimensional multifluid plasma models. Part 1. Fundamentals

This paper is concerned with one-dimensional and time-dependent multifluid plasma models derived from multifluid MHD equations. In order to reduce the number of equations to be solved, the impurities are described in the framework of the average ion approach without restricting the impurity densitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 1999-05, Vol.61 (4), p.645-667
Hauptverfasser: BACHMANN, P., SÜNDER, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue 4
container_start_page 645
container_title Journal of plasma physics
container_volume 61
creator BACHMANN, P.
SÜNDER, D.
description This paper is concerned with one-dimensional and time-dependent multifluid plasma models derived from multifluid MHD equations. In order to reduce the number of equations to be solved, the impurities are described in the framework of the average ion approach without restricting the impurity densities to be small compared with the hydrogen plasma density. Equalizing the plasma temperatures and adopting the condition of quasineutrality, we arrive at a three-fluid description of a current-carrying plasma, and analyse the ability of the self-consistent system of model equations thus obtained to support stationary solutions in a moving frame. This system is reduced to a currentless plasma description assuming at first different flow velocities of the particles and then a currentless, streaming plasma where all particles move with the same velocity. Introducing Lagrangian coordinates and adopting an equation of state, a single reaction–diffusion equation (RDE) for the temperature is obtained. The impurity density, which affects the radiation loss term and the heat conduction coefficient of the RDE, has to be calculated as a function of the temperature by solving additionally a first-order differential equation. This is demonstrated for carbon and high-Z impurities.
doi_str_mv 10.1017/S002237789900762X
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S002237789900762X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S002237789900762X</cupid><sourcerecordid>10_1017_S002237789900762X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-af955e9634aed7beacb29a3420b0c3bdd850105b4a13f5ecfe3d2e0a5b3d0deb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKs_wNsevKa-2Ww2uxdBqm3FQisqeAtvNllJ3Y-S7IL-e7e06EHwNIeZZxiGkEsGEwZMXj8DxDGXMstzAJnGb0dkxJI0pzIDeUxGO5vu_FNyFsIGADjEckRuVo2lxtW2Ca5tsIrqvupcWfXORNsKQ41R3RpbhUm0Rt9FbBLN-sbgAHRYhXNyUg5iLw46Jq-z-5fpgi5X84fp7ZIWXCQdxTIXwuYpT9AaqS0WOs6RJzFoKLg2JhPAQOgEGS-FLUrLTWwBheYGjNV8TNi-t_BtCN6Wautdjf5LMVC7A9SfAwbmas9sMRRYlR6bwoVfMMuTLEuGGN3HXOjs54-N_kOlkkuh0vmTyu4kXz-upVoMeX6YgrX2zrxbtWl7P3wX_hnzDbOoebE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>One-dimensional multifluid plasma models. Part 1. Fundamentals</title><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>BACHMANN, P. ; SÜNDER, D.</creator><creatorcontrib>BACHMANN, P. ; SÜNDER, D.</creatorcontrib><description>This paper is concerned with one-dimensional and time-dependent multifluid plasma models derived from multifluid MHD equations. In order to reduce the number of equations to be solved, the impurities are described in the framework of the average ion approach without restricting the impurity densities to be small compared with the hydrogen plasma density. Equalizing the plasma temperatures and adopting the condition of quasineutrality, we arrive at a three-fluid description of a current-carrying plasma, and analyse the ability of the self-consistent system of model equations thus obtained to support stationary solutions in a moving frame. This system is reduced to a currentless plasma description assuming at first different flow velocities of the particles and then a currentless, streaming plasma where all particles move with the same velocity. Introducing Lagrangian coordinates and adopting an equation of state, a single reaction–diffusion equation (RDE) for the temperature is obtained. The impurity density, which affects the radiation loss term and the heat conduction coefficient of the RDE, has to be calculated as a function of the temperature by solving additionally a first-order differential equation. This is demonstrated for carbon and high-Z impurities.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S002237789900762X</identifier><identifier>CODEN: JPLPBZ</identifier><language>eng</language><publisher>London: Cambridge University Press</publisher><subject>Exact sciences and technology ; Impurities in plasmas ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma production and heating ; Plasma properties ; Plasma sources ; Transport properties</subject><ispartof>Journal of plasma physics, 1999-05, Vol.61 (4), p.645-667</ispartof><rights>1999 Cambridge University Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-af955e9634aed7beacb29a3420b0c3bdd850105b4a13f5ecfe3d2e0a5b3d0deb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002237789900762X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27929,27930,55633</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1894884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BACHMANN, P.</creatorcontrib><creatorcontrib>SÜNDER, D.</creatorcontrib><title>One-dimensional multifluid plasma models. Part 1. Fundamentals</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>This paper is concerned with one-dimensional and time-dependent multifluid plasma models derived from multifluid MHD equations. In order to reduce the number of equations to be solved, the impurities are described in the framework of the average ion approach without restricting the impurity densities to be small compared with the hydrogen plasma density. Equalizing the plasma temperatures and adopting the condition of quasineutrality, we arrive at a three-fluid description of a current-carrying plasma, and analyse the ability of the self-consistent system of model equations thus obtained to support stationary solutions in a moving frame. This system is reduced to a currentless plasma description assuming at first different flow velocities of the particles and then a currentless, streaming plasma where all particles move with the same velocity. Introducing Lagrangian coordinates and adopting an equation of state, a single reaction–diffusion equation (RDE) for the temperature is obtained. The impurity density, which affects the radiation loss term and the heat conduction coefficient of the RDE, has to be calculated as a function of the temperature by solving additionally a first-order differential equation. This is demonstrated for carbon and high-Z impurities.</description><subject>Exact sciences and technology</subject><subject>Impurities in plasmas</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma production and heating</subject><subject>Plasma properties</subject><subject>Plasma sources</subject><subject>Transport properties</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWKs_wNsevKa-2Ww2uxdBqm3FQisqeAtvNllJ3Y-S7IL-e7e06EHwNIeZZxiGkEsGEwZMXj8DxDGXMstzAJnGb0dkxJI0pzIDeUxGO5vu_FNyFsIGADjEckRuVo2lxtW2Ca5tsIrqvupcWfXORNsKQ41R3RpbhUm0Rt9FbBLN-sbgAHRYhXNyUg5iLw46Jq-z-5fpgi5X84fp7ZIWXCQdxTIXwuYpT9AaqS0WOs6RJzFoKLg2JhPAQOgEGS-FLUrLTWwBheYGjNV8TNi-t_BtCN6Wautdjf5LMVC7A9SfAwbmas9sMRRYlR6bwoVfMMuTLEuGGN3HXOjs54-N_kOlkkuh0vmTyu4kXz-upVoMeX6YgrX2zrxbtWl7P3wX_hnzDbOoebE</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>BACHMANN, P.</creator><creator>SÜNDER, D.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990501</creationdate><title>One-dimensional multifluid plasma models. Part 1. Fundamentals</title><author>BACHMANN, P. ; SÜNDER, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-af955e9634aed7beacb29a3420b0c3bdd850105b4a13f5ecfe3d2e0a5b3d0deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Impurities in plasmas</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma production and heating</topic><topic>Plasma properties</topic><topic>Plasma sources</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BACHMANN, P.</creatorcontrib><creatorcontrib>SÜNDER, D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BACHMANN, P.</au><au>SÜNDER, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional multifluid plasma models. Part 1. Fundamentals</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>1999-05-01</date><risdate>1999</risdate><volume>61</volume><issue>4</issue><spage>645</spage><epage>667</epage><pages>645-667</pages><issn>0022-3778</issn><eissn>1469-7807</eissn><coden>JPLPBZ</coden><abstract>This paper is concerned with one-dimensional and time-dependent multifluid plasma models derived from multifluid MHD equations. In order to reduce the number of equations to be solved, the impurities are described in the framework of the average ion approach without restricting the impurity densities to be small compared with the hydrogen plasma density. Equalizing the plasma temperatures and adopting the condition of quasineutrality, we arrive at a three-fluid description of a current-carrying plasma, and analyse the ability of the self-consistent system of model equations thus obtained to support stationary solutions in a moving frame. This system is reduced to a currentless plasma description assuming at first different flow velocities of the particles and then a currentless, streaming plasma where all particles move with the same velocity. Introducing Lagrangian coordinates and adopting an equation of state, a single reaction–diffusion equation (RDE) for the temperature is obtained. The impurity density, which affects the radiation loss term and the heat conduction coefficient of the RDE, has to be calculated as a function of the temperature by solving additionally a first-order differential equation. This is demonstrated for carbon and high-Z impurities.</abstract><cop>London</cop><pub>Cambridge University Press</pub><doi>10.1017/S002237789900762X</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 1999-05, Vol.61 (4), p.645-667
issn 0022-3778
1469-7807
language eng
recordid cdi_crossref_primary_10_1017_S002237789900762X
source Cambridge Journals - Connect here FIRST to enable access
subjects Exact sciences and technology
Impurities in plasmas
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma production and heating
Plasma properties
Plasma sources
Transport properties
title One-dimensional multifluid plasma models. Part 1. Fundamentals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20multifluid%20plasma%20models.%20Part%201.%20Fundamentals&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=BACHMANN,%20P.&rft.date=1999-05-01&rft.volume=61&rft.issue=4&rft.spage=645&rft.epage=667&rft.pages=645-667&rft.issn=0022-3778&rft.eissn=1469-7807&rft.coden=JPLPBZ&rft_id=info:doi/10.1017/S002237789900762X&rft_dat=%3Ccambridge_cross%3E10_1017_S002237789900762X%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S002237789900762X&rfr_iscdi=true