The motion of fibres in turbulent flow

Equations of mean and fluctuating velocities in rotation and translation have been derived for rigid thin inertialess fibres moving in a turbulent fluid. The derived equations for mean motion are general to fluid velocities that vary nonlinearly along the length of the fibre. From the equations of f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 1998-12, Vol.377, p.47-64
Hauptverfasser: OLSON, JAMES A., KEREKES, RICHARD J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue
container_start_page 47
container_title Journal of fluid mechanics
container_volume 377
creator OLSON, JAMES A.
KEREKES, RICHARD J.
description Equations of mean and fluctuating velocities in rotation and translation have been derived for rigid thin inertialess fibres moving in a turbulent fluid. The derived equations for mean motion are general to fluid velocities that vary nonlinearly along the length of the fibre. From the equations of fluctuating fibre velocity, rotational and translational dispersion coefficients were derived. The resulting dispersion coefficients were shown to decrease as the ratio of fibre length to Lagrangian integral length scale of the turbulence increased.
doi_str_mv 10.1017/S0022112098002973
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0022112098002973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112098002973</cupid><sourcerecordid>10_1017_S0022112098002973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-b54fd5cb8cf7155ca94b51346209878bb96969d809b75d81e65344bd474794663</originalsourceid><addsrcrecordid>eNp9j09LAzEQxYMoWKsfwNsexNtqpvm3OYpoFQoqrXgMSTbR1O1uSbao394sLXoQZA4z8N4bfg-hU8AXgEFczjGeTAAmWFb5koLsoRFQLkvBKdtHo0EuB_0QHaW0xBgIlmKEzhdvrlh1fejaovOFDya6VIS26DfRbBrX9oVvuo9jdOB1k9zJbo_R8-3N4vqunD1M76-vZqUljPalYdTXzJrKegGMWS2pYUAoH7hEZYzkeeoKSyNYXYHjjFBqaiqokJRzMkaw_Wtjl1J0Xq1jWOn4pQCroaj6UzRnzraZtU5WNz7q1ob0G-QEMkK2lVtbSL37_JF1fFdcEMEUnz4pNn_kL2LO1SL7yQ5Fr0wM9atTy24T21z_H5hvJG1t_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The motion of fibres in turbulent flow</title><source>Cambridge University Press Journals Complete</source><creator>OLSON, JAMES A. ; KEREKES, RICHARD J.</creator><creatorcontrib>OLSON, JAMES A. ; KEREKES, RICHARD J.</creatorcontrib><description>Equations of mean and fluctuating velocities in rotation and translation have been derived for rigid thin inertialess fibres moving in a turbulent fluid. The derived equations for mean motion are general to fluid velocities that vary nonlinearly along the length of the fibre. From the equations of fluctuating fibre velocity, rotational and translational dispersion coefficients were derived. The resulting dispersion coefficients were shown to decrease as the ratio of fibre length to Lagrangian integral length scale of the turbulence increased.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112098002973</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; Physics</subject><ispartof>Journal of fluid mechanics, 1998-12, Vol.377, p.47-64</ispartof><rights>1998 Cambridge University Press</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-b54fd5cb8cf7155ca94b51346209878bb96969d809b75d81e65344bd474794663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112098002973/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1631134$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>OLSON, JAMES A.</creatorcontrib><creatorcontrib>KEREKES, RICHARD J.</creatorcontrib><title>The motion of fibres in turbulent flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Equations of mean and fluctuating velocities in rotation and translation have been derived for rigid thin inertialess fibres moving in a turbulent fluid. The derived equations for mean motion are general to fluid velocities that vary nonlinearly along the length of the fibre. From the equations of fluctuating fibre velocity, rotational and translational dispersion coefficients were derived. The resulting dispersion coefficients were shown to decrease as the ratio of fibre length to Lagrangian integral length scale of the turbulence increased.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9j09LAzEQxYMoWKsfwNsexNtqpvm3OYpoFQoqrXgMSTbR1O1uSbao394sLXoQZA4z8N4bfg-hU8AXgEFczjGeTAAmWFb5koLsoRFQLkvBKdtHo0EuB_0QHaW0xBgIlmKEzhdvrlh1fejaovOFDya6VIS26DfRbBrX9oVvuo9jdOB1k9zJbo_R8-3N4vqunD1M76-vZqUljPalYdTXzJrKegGMWS2pYUAoH7hEZYzkeeoKSyNYXYHjjFBqaiqokJRzMkaw_Wtjl1J0Xq1jWOn4pQCroaj6UzRnzraZtU5WNz7q1ob0G-QEMkK2lVtbSL37_JF1fFdcEMEUnz4pNn_kL2LO1SL7yQ5Fr0wM9atTy24T21z_H5hvJG1t_w</recordid><startdate>19981225</startdate><enddate>19981225</enddate><creator>OLSON, JAMES A.</creator><creator>KEREKES, RICHARD J.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19981225</creationdate><title>The motion of fibres in turbulent flow</title><author>OLSON, JAMES A. ; KEREKES, RICHARD J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-b54fd5cb8cf7155ca94b51346209878bb96969d809b75d81e65344bd474794663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OLSON, JAMES A.</creatorcontrib><creatorcontrib>KEREKES, RICHARD J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OLSON, JAMES A.</au><au>KEREKES, RICHARD J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The motion of fibres in turbulent flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1998-12-25</date><risdate>1998</risdate><volume>377</volume><spage>47</spage><epage>64</epage><pages>47-64</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Equations of mean and fluctuating velocities in rotation and translation have been derived for rigid thin inertialess fibres moving in a turbulent fluid. The derived equations for mean motion are general to fluid velocities that vary nonlinearly along the length of the fibre. From the equations of fluctuating fibre velocity, rotational and translational dispersion coefficients were derived. The resulting dispersion coefficients were shown to decrease as the ratio of fibre length to Lagrangian integral length scale of the turbulence increased.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112098002973</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 1998-12, Vol.377, p.47-64
issn 0022-1120
1469-7645
language eng
recordid cdi_crossref_primary_10_1017_S0022112098002973
source Cambridge University Press Journals Complete
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Multiphase and particle-laden flows
Nonhomogeneous flows
Physics
title The motion of fibres in turbulent flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20motion%20of%20fibres%20in%20turbulent%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=OLSON,%20JAMES%20A.&rft.date=1998-12-25&rft.volume=377&rft.spage=47&rft.epage=64&rft.pages=47-64&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112098002973&rft_dat=%3Ccambridge_cross%3E10_1017_S0022112098002973%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0022112098002973&rfr_iscdi=true