Coupled Batchelor flows in a confined cavity
Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity containing two vortex patches is investigated. A two-parameter family of solutions, characterized by any two out of the positions of the separation and reattachment points of the main eddy, the tangential velocity at...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 1996-07, Vol.319 (1), p.305-322 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 1 |
container_start_page | 305 |
container_title | Journal of fluid mechanics |
container_volume | 319 |
creator | Vynnycky, M. Kanev, K. |
description | Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity containing two vortex patches is investigated. A two-parameter family of solutions, characterized by any two out of the positions of the separation and reattachment points of the main eddy, the tangential velocity at separation and the ratio of the core vorticities, is identified and computed numerically. It is found that solutions can only be obtained for a rather narrow band of combinations of these parameters; the reasons for this constraint are discussed. Finally, we consider whether any of the coupled Batchelor flow solutions actually does represent the limit of high Reynolds number flow by comparing the inviscid results with those of earlier Navier–Stokes computations (Vynnycky & Kimura 1994). Agreement for the position of the dividing streamline and the location of the centre of the main core proves to be very encouraging, and suggestions are made as to the possible future development of such a two-eddy model. |
doi_str_mv | 10.1017/S0022112096007355 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0022112096007355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112096007355</cupid><sourcerecordid>10_1017_S0022112096007355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-ce5b258f0169948c40e1a16da27e1f25a1f8b8350872ab079100f4f976c695233</originalsourceid><addsrcrecordid>eNp9j7FOwzAURS0EEqXwAWwZGAm8Z8d2PEJFA6gCIWC2HNeGlDSp7LTQvydVqy5ITG849zzdS8g5whUCyutXAEoRKSgBIBnnB2SAmVCpFBk_JIMNTjf8mJzEOANABkoOyOWoXS5qN01uTWc_Xd2GxNftd0yqJjGJbRtfNT21ZlV161Ny5E0d3dnuDsn7-O5tdJ9OnouH0c0ktYxnXWodLynPPaBQKsttBg4Niqmh0qGn3KDPy5xxyCU1JUiFAD7zSgorFKeMDQlu_9rQxhic14tQzU1YawS9mav_zO2di62zMNGa2gfT2CruRYYCMMc-lm5jVezczx6b8KWFZJJrUbxoWoyLp1yO9WOfZ7sqZl6Gavrh9Kxdhqaf_0-ZXy-Ib_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coupled Batchelor flows in a confined cavity</title><source>Cambridge University Press Journals Complete</source><creator>Vynnycky, M. ; Kanev, K.</creator><creatorcontrib>Vynnycky, M. ; Kanev, K.</creatorcontrib><description>Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity containing two vortex patches is investigated. A two-parameter family of solutions, characterized by any two out of the positions of the separation and reattachment points of the main eddy, the tangential velocity at separation and the ratio of the core vorticities, is identified and computed numerically. It is found that solutions can only be obtained for a rather narrow band of combinations of these parameters; the reasons for this constraint are discussed. Finally, we consider whether any of the coupled Batchelor flow solutions actually does represent the limit of high Reynolds number flow by comparing the inviscid results with those of earlier Navier–Stokes computations (Vynnycky & Kimura 1994). Agreement for the position of the dividing streamline and the location of the centre of the main core proves to be very encouraging, and suggestions are made as to the possible future development of such a two-eddy model.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112096007355</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; High-reynolds-number turbulence ; Inviscid flows with vorticity ; Laminar flows ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 1996-07, Vol.319 (1), p.305-322</ispartof><rights>1996 Cambridge University Press</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-ce5b258f0169948c40e1a16da27e1f25a1f8b8350872ab079100f4f976c695233</citedby><cites>FETCH-LOGICAL-c354t-ce5b258f0169948c40e1a16da27e1f25a1f8b8350872ab079100f4f976c695233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112096007355/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3160181$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vynnycky, M.</creatorcontrib><creatorcontrib>Kanev, K.</creatorcontrib><title>Coupled Batchelor flows in a confined cavity</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity containing two vortex patches is investigated. A two-parameter family of solutions, characterized by any two out of the positions of the separation and reattachment points of the main eddy, the tangential velocity at separation and the ratio of the core vorticities, is identified and computed numerically. It is found that solutions can only be obtained for a rather narrow band of combinations of these parameters; the reasons for this constraint are discussed. Finally, we consider whether any of the coupled Batchelor flow solutions actually does represent the limit of high Reynolds number flow by comparing the inviscid results with those of earlier Navier–Stokes computations (Vynnycky & Kimura 1994). Agreement for the position of the dividing streamline and the location of the centre of the main core proves to be very encouraging, and suggestions are made as to the possible future development of such a two-eddy model.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High-reynolds-number turbulence</subject><subject>Inviscid flows with vorticity</subject><subject>Laminar flows</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9j7FOwzAURS0EEqXwAWwZGAm8Z8d2PEJFA6gCIWC2HNeGlDSp7LTQvydVqy5ITG849zzdS8g5whUCyutXAEoRKSgBIBnnB2SAmVCpFBk_JIMNTjf8mJzEOANABkoOyOWoXS5qN01uTWc_Xd2GxNftd0yqJjGJbRtfNT21ZlV161Ny5E0d3dnuDsn7-O5tdJ9OnouH0c0ktYxnXWodLynPPaBQKsttBg4Niqmh0qGn3KDPy5xxyCU1JUiFAD7zSgorFKeMDQlu_9rQxhic14tQzU1YawS9mav_zO2di62zMNGa2gfT2CruRYYCMMc-lm5jVezczx6b8KWFZJJrUbxoWoyLp1yO9WOfZ7sqZl6Gavrh9Kxdhqaf_0-ZXy-Ib_g</recordid><startdate>19960725</startdate><enddate>19960725</enddate><creator>Vynnycky, M.</creator><creator>Kanev, K.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960725</creationdate><title>Coupled Batchelor flows in a confined cavity</title><author>Vynnycky, M. ; Kanev, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-ce5b258f0169948c40e1a16da27e1f25a1f8b8350872ab079100f4f976c695233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High-reynolds-number turbulence</topic><topic>Inviscid flows with vorticity</topic><topic>Laminar flows</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vynnycky, M.</creatorcontrib><creatorcontrib>Kanev, K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vynnycky, M.</au><au>Kanev, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Batchelor flows in a confined cavity</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1996-07-25</date><risdate>1996</risdate><volume>319</volume><issue>1</issue><spage>305</spage><epage>322</epage><pages>305-322</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity containing two vortex patches is investigated. A two-parameter family of solutions, characterized by any two out of the positions of the separation and reattachment points of the main eddy, the tangential velocity at separation and the ratio of the core vorticities, is identified and computed numerically. It is found that solutions can only be obtained for a rather narrow band of combinations of these parameters; the reasons for this constraint are discussed. Finally, we consider whether any of the coupled Batchelor flow solutions actually does represent the limit of high Reynolds number flow by comparing the inviscid results with those of earlier Navier–Stokes computations (Vynnycky & Kimura 1994). Agreement for the position of the dividing streamline and the location of the centre of the main core proves to be very encouraging, and suggestions are made as to the possible future development of such a two-eddy model.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112096007355</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 1996-07, Vol.319 (1), p.305-322 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0022112096007355 |
source | Cambridge University Press Journals Complete |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) High-reynolds-number turbulence Inviscid flows with vorticity Laminar flows Physics Turbulent flows, convection, and heat transfer |
title | Coupled Batchelor flows in a confined cavity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Batchelor%20flows%20in%20a%20confined%20cavity&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Vynnycky,%20M.&rft.date=1996-07-25&rft.volume=319&rft.issue=1&rft.spage=305&rft.epage=322&rft.pages=305-322&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112096007355&rft_dat=%3Ccambridge_cross%3E10_1017_S0022112096007355%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0022112096007355&rfr_iscdi=true |