Coupled Batchelor flows in a confined cavity

Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity containing two vortex patches is investigated. A two-parameter family of solutions, characterized by any two out of the positions of the separation and reattachment points of the main eddy, the tangential velocity at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 1996-07, Vol.319 (1), p.305-322
Hauptverfasser: Vynnycky, M., Kanev, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 1
container_start_page 305
container_title Journal of fluid mechanics
container_volume 319
creator Vynnycky, M.
Kanev, K.
description Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity containing two vortex patches is investigated. A two-parameter family of solutions, characterized by any two out of the positions of the separation and reattachment points of the main eddy, the tangential velocity at separation and the ratio of the core vorticities, is identified and computed numerically. It is found that solutions can only be obtained for a rather narrow band of combinations of these parameters; the reasons for this constraint are discussed. Finally, we consider whether any of the coupled Batchelor flow solutions actually does represent the limit of high Reynolds number flow by comparing the inviscid results with those of earlier Navier–Stokes computations (Vynnycky & Kimura 1994). Agreement for the position of the dividing streamline and the location of the centre of the main core proves to be very encouraging, and suggestions are made as to the possible future development of such a two-eddy model.
doi_str_mv 10.1017/S0022112096007355
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0022112096007355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112096007355</cupid><sourcerecordid>10_1017_S0022112096007355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-ce5b258f0169948c40e1a16da27e1f25a1f8b8350872ab079100f4f976c695233</originalsourceid><addsrcrecordid>eNp9j7FOwzAURS0EEqXwAWwZGAm8Z8d2PEJFA6gCIWC2HNeGlDSp7LTQvydVqy5ITG849zzdS8g5whUCyutXAEoRKSgBIBnnB2SAmVCpFBk_JIMNTjf8mJzEOANABkoOyOWoXS5qN01uTWc_Xd2GxNftd0yqJjGJbRtfNT21ZlV161Ny5E0d3dnuDsn7-O5tdJ9OnouH0c0ktYxnXWodLynPPaBQKsttBg4Niqmh0qGn3KDPy5xxyCU1JUiFAD7zSgorFKeMDQlu_9rQxhic14tQzU1YawS9mav_zO2di62zMNGa2gfT2CruRYYCMMc-lm5jVezczx6b8KWFZJJrUbxoWoyLp1yO9WOfZ7sqZl6Gavrh9Kxdhqaf_0-ZXy-Ib_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coupled Batchelor flows in a confined cavity</title><source>Cambridge University Press Journals Complete</source><creator>Vynnycky, M. ; Kanev, K.</creator><creatorcontrib>Vynnycky, M. ; Kanev, K.</creatorcontrib><description>Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity containing two vortex patches is investigated. A two-parameter family of solutions, characterized by any two out of the positions of the separation and reattachment points of the main eddy, the tangential velocity at separation and the ratio of the core vorticities, is identified and computed numerically. It is found that solutions can only be obtained for a rather narrow band of combinations of these parameters; the reasons for this constraint are discussed. Finally, we consider whether any of the coupled Batchelor flow solutions actually does represent the limit of high Reynolds number flow by comparing the inviscid results with those of earlier Navier–Stokes computations (Vynnycky &amp; Kimura 1994). Agreement for the position of the dividing streamline and the location of the centre of the main core proves to be very encouraging, and suggestions are made as to the possible future development of such a two-eddy model.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112096007355</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; High-reynolds-number turbulence ; Inviscid flows with vorticity ; Laminar flows ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>Journal of fluid mechanics, 1996-07, Vol.319 (1), p.305-322</ispartof><rights>1996 Cambridge University Press</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-ce5b258f0169948c40e1a16da27e1f25a1f8b8350872ab079100f4f976c695233</citedby><cites>FETCH-LOGICAL-c354t-ce5b258f0169948c40e1a16da27e1f25a1f8b8350872ab079100f4f976c695233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112096007355/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3160181$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vynnycky, M.</creatorcontrib><creatorcontrib>Kanev, K.</creatorcontrib><title>Coupled Batchelor flows in a confined cavity</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity containing two vortex patches is investigated. A two-parameter family of solutions, characterized by any two out of the positions of the separation and reattachment points of the main eddy, the tangential velocity at separation and the ratio of the core vorticities, is identified and computed numerically. It is found that solutions can only be obtained for a rather narrow band of combinations of these parameters; the reasons for this constraint are discussed. Finally, we consider whether any of the coupled Batchelor flow solutions actually does represent the limit of high Reynolds number flow by comparing the inviscid results with those of earlier Navier–Stokes computations (Vynnycky &amp; Kimura 1994). Agreement for the position of the dividing streamline and the location of the centre of the main core proves to be very encouraging, and suggestions are made as to the possible future development of such a two-eddy model.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High-reynolds-number turbulence</subject><subject>Inviscid flows with vorticity</subject><subject>Laminar flows</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9j7FOwzAURS0EEqXwAWwZGAm8Z8d2PEJFA6gCIWC2HNeGlDSp7LTQvydVqy5ITG849zzdS8g5whUCyutXAEoRKSgBIBnnB2SAmVCpFBk_JIMNTjf8mJzEOANABkoOyOWoXS5qN01uTWc_Xd2GxNftd0yqJjGJbRtfNT21ZlV161Ny5E0d3dnuDsn7-O5tdJ9OnouH0c0ktYxnXWodLynPPaBQKsttBg4Niqmh0qGn3KDPy5xxyCU1JUiFAD7zSgorFKeMDQlu_9rQxhic14tQzU1YawS9mav_zO2di62zMNGa2gfT2CruRYYCMMc-lm5jVezczx6b8KWFZJJrUbxoWoyLp1yO9WOfZ7sqZl6Gavrh9Kxdhqaf_0-ZXy-Ib_g</recordid><startdate>19960725</startdate><enddate>19960725</enddate><creator>Vynnycky, M.</creator><creator>Kanev, K.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960725</creationdate><title>Coupled Batchelor flows in a confined cavity</title><author>Vynnycky, M. ; Kanev, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-ce5b258f0169948c40e1a16da27e1f25a1f8b8350872ab079100f4f976c695233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High-reynolds-number turbulence</topic><topic>Inviscid flows with vorticity</topic><topic>Laminar flows</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vynnycky, M.</creatorcontrib><creatorcontrib>Kanev, K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vynnycky, M.</au><au>Kanev, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Batchelor flows in a confined cavity</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1996-07-25</date><risdate>1996</risdate><volume>319</volume><issue>1</issue><spage>305</spage><epage>322</epage><pages>305-322</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity containing two vortex patches is investigated. A two-parameter family of solutions, characterized by any two out of the positions of the separation and reattachment points of the main eddy, the tangential velocity at separation and the ratio of the core vorticities, is identified and computed numerically. It is found that solutions can only be obtained for a rather narrow band of combinations of these parameters; the reasons for this constraint are discussed. Finally, we consider whether any of the coupled Batchelor flow solutions actually does represent the limit of high Reynolds number flow by comparing the inviscid results with those of earlier Navier–Stokes computations (Vynnycky &amp; Kimura 1994). Agreement for the position of the dividing streamline and the location of the centre of the main core proves to be very encouraging, and suggestions are made as to the possible future development of such a two-eddy model.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112096007355</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 1996-07, Vol.319 (1), p.305-322
issn 0022-1120
1469-7645
language eng
recordid cdi_crossref_primary_10_1017_S0022112096007355
source Cambridge University Press Journals Complete
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
High-reynolds-number turbulence
Inviscid flows with vorticity
Laminar flows
Physics
Turbulent flows, convection, and heat transfer
title Coupled Batchelor flows in a confined cavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Batchelor%20flows%20in%20a%20confined%20cavity&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Vynnycky,%20M.&rft.date=1996-07-25&rft.volume=319&rft.issue=1&rft.spage=305&rft.epage=322&rft.pages=305-322&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112096007355&rft_dat=%3Ccambridge_cross%3E10_1017_S0022112096007355%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0022112096007355&rfr_iscdi=true