A theory of anisotropic fluids
A theory is proposed in which the stress tensor is a function of the components of the rate of deformation tensor and a symmetric tensor describing the microscopic structure of a fluid. The expression for the stress tensor can be written in closed form using results from the Hamilton-Cayley theorem....
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 1962-05, Vol.13 (1), p.33-46 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Journal of fluid mechanics |
container_volume | 13 |
creator | Hand, George L. |
description | A theory is proposed in which the stress tensor is a function of the components of the rate of deformation tensor and a symmetric tensor describing the microscopic structure of a fluid. The expression for the stress tensor can be written in closed form using results from the Hamilton-Cayley theorem. This theory is shown to contain Prager's theory of dumbbell suspensions as a special case. By limiting the type of terms in the constitutive equations, various stress components can be evaluated for simple shear. These exhibit non-Newtonian behaviour typical of certain higher polymer solutions. Some of the results of the anisotropic fluid theory are compared with experimental measurements of normal stress and apparent viscosity. Certain high polymers in solution show good agreement between theory and experiment, at least for low enough values of the rate of shear. |
doi_str_mv | 10.1017/S0022112062000476 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0022112062000476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112062000476</cupid><sourcerecordid>10_1017_S0022112062000476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-551934befb355cc8a49ceb31808d64206d9bc85d6e13cf07d2e7506a6ff7a4b03</originalsourceid><addsrcrecordid>eNp9j8tKw0AUhgdRMFYfwI3kBUbPZG7JshStQkXqBdwNc9WpbVNmUrBvb0KLG8HVWfzn-y8IXRK4JkDkzQtAVRFSgagAgElxhArCRIOlYPwYFYOMB_0UneW8ACAUGlmgq3HZffo27co2lHodc9uldhNtGZbb6PI5Ogl6mf3F4Y7Q293t6-Qez56mD5PxDFsqeYc5Jw1lxgdDObe21qyx3lBSQ-0E60u5xtiaO-EJtQGkq7zkILQIQWpmgI4Q2fva1OacfFCbFFc67RQBNQxUfwb2DN4zMXf--xfQ6UsJ2ddSYjpX_LF-ZxLm6rn_p4cMvTIpug-vFu02rftd_6T8AOU2X3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A theory of anisotropic fluids</title><source>Cambridge University Press Journals Complete</source><creator>Hand, George L.</creator><creatorcontrib>Hand, George L.</creatorcontrib><description>A theory is proposed in which the stress tensor is a function of the components of the rate of deformation tensor and a symmetric tensor describing the microscopic structure of a fluid. The expression for the stress tensor can be written in closed form using results from the Hamilton-Cayley theorem. This theory is shown to contain Prager's theory of dumbbell suspensions as a special case. By limiting the type of terms in the constitutive equations, various stress components can be evaluated for simple shear. These exhibit non-Newtonian behaviour typical of certain higher polymer solutions. Some of the results of the anisotropic fluid theory are compared with experimental measurements of normal stress and apparent viscosity. Certain high polymers in solution show good agreement between theory and experiment, at least for low enough values of the rate of shear.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112062000476</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Journal of fluid mechanics, 1962-05, Vol.13 (1), p.33-46</ispartof><rights>1962 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-551934befb355cc8a49ceb31808d64206d9bc85d6e13cf07d2e7506a6ff7a4b03</citedby><cites>FETCH-LOGICAL-c375t-551934befb355cc8a49ceb31808d64206d9bc85d6e13cf07d2e7506a6ff7a4b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112062000476/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Hand, George L.</creatorcontrib><title>A theory of anisotropic fluids</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A theory is proposed in which the stress tensor is a function of the components of the rate of deformation tensor and a symmetric tensor describing the microscopic structure of a fluid. The expression for the stress tensor can be written in closed form using results from the Hamilton-Cayley theorem. This theory is shown to contain Prager's theory of dumbbell suspensions as a special case. By limiting the type of terms in the constitutive equations, various stress components can be evaluated for simple shear. These exhibit non-Newtonian behaviour typical of certain higher polymer solutions. Some of the results of the anisotropic fluid theory are compared with experimental measurements of normal stress and apparent viscosity. Certain high polymers in solution show good agreement between theory and experiment, at least for low enough values of the rate of shear.</description><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1962</creationdate><recordtype>article</recordtype><recordid>eNp9j8tKw0AUhgdRMFYfwI3kBUbPZG7JshStQkXqBdwNc9WpbVNmUrBvb0KLG8HVWfzn-y8IXRK4JkDkzQtAVRFSgagAgElxhArCRIOlYPwYFYOMB_0UneW8ACAUGlmgq3HZffo27co2lHodc9uldhNtGZbb6PI5Ogl6mf3F4Y7Q293t6-Qez56mD5PxDFsqeYc5Jw1lxgdDObe21qyx3lBSQ-0E60u5xtiaO-EJtQGkq7zkILQIQWpmgI4Q2fva1OacfFCbFFc67RQBNQxUfwb2DN4zMXf--xfQ6UsJ2ddSYjpX_LF-ZxLm6rn_p4cMvTIpug-vFu02rftd_6T8AOU2X3w</recordid><startdate>196205</startdate><enddate>196205</enddate><creator>Hand, George L.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>196205</creationdate><title>A theory of anisotropic fluids</title><author>Hand, George L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-551934befb355cc8a49ceb31808d64206d9bc85d6e13cf07d2e7506a6ff7a4b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1962</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hand, George L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hand, George L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theory of anisotropic fluids</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1962-05</date><risdate>1962</risdate><volume>13</volume><issue>1</issue><spage>33</spage><epage>46</epage><pages>33-46</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A theory is proposed in which the stress tensor is a function of the components of the rate of deformation tensor and a symmetric tensor describing the microscopic structure of a fluid. The expression for the stress tensor can be written in closed form using results from the Hamilton-Cayley theorem. This theory is shown to contain Prager's theory of dumbbell suspensions as a special case. By limiting the type of terms in the constitutive equations, various stress components can be evaluated for simple shear. These exhibit non-Newtonian behaviour typical of certain higher polymer solutions. Some of the results of the anisotropic fluid theory are compared with experimental measurements of normal stress and apparent viscosity. Certain high polymers in solution show good agreement between theory and experiment, at least for low enough values of the rate of shear.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112062000476</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 1962-05, Vol.13 (1), p.33-46 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0022112062000476 |
source | Cambridge University Press Journals Complete |
title | A theory of anisotropic fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theory%20of%20anisotropic%20fluids&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Hand,%20George%20L.&rft.date=1962-05&rft.volume=13&rft.issue=1&rft.spage=33&rft.epage=46&rft.pages=33-46&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/S0022112062000476&rft_dat=%3Ccambridge_cross%3E10_1017_S0022112062000476%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0022112062000476&rfr_iscdi=true |