On the optimal stopping problems with monotone thresholds
As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The rec...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2015-12, Vol.52 (4), p.926-940 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 940 |
---|---|
container_issue | 4 |
container_start_page | 926 |
container_title | Journal of applied probability |
container_volume | 52 |
creator | Tamaki, Mitsushi |
description | As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson
et al.
(1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized. |
doi_str_mv | 10.1017/S0021900200112999 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200112999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200112999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-aab897c636a8ed6d74bf2ae41f798d85e5a5e6a4b19891b49f4534a1205758053</originalsourceid><addsrcrecordid>eNplj81KxTAUhIMoWK8-gLu8QPWcNmlylnLxDy7chbouaZvaStuEJCC-vS26u5uZxXwMM4zdItwhoLp_AyiQVgFALIjojGUolMwrUMU5y7Y43_JLdhXj10oJSSpjdFx4Gix3Po2zmXhMzvtx-eQ-uGayc-TfYxr47BaX3GJXNtg4uKmL1-yiN1O0N_--Yx9Pj-_7l_xwfH7dPxzyFhWk3JhGk2qrsjLadlWnRNMXxgrsFelOSyuNtJURDZImbAT1QpbCYAFSSQ2y3DH8622DizHYvvZhnRp-aoR6-16ffC9_ASWTS-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the optimal stopping problems with monotone thresholds</title><source>Cambridge Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Tamaki, Mitsushi</creator><creatorcontrib>Tamaki, Mitsushi</creatorcontrib><description>As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson
et al.
(1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200112999</identifier><language>eng</language><ispartof>Journal of applied probability, 2015-12, Vol.52 (4), p.926-940</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-aab897c636a8ed6d74bf2ae41f798d85e5a5e6a4b19891b49f4534a1205758053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Tamaki, Mitsushi</creatorcontrib><title>On the optimal stopping problems with monotone thresholds</title><title>Journal of applied probability</title><description>As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson
et al.
(1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNplj81KxTAUhIMoWK8-gLu8QPWcNmlylnLxDy7chbouaZvaStuEJCC-vS26u5uZxXwMM4zdItwhoLp_AyiQVgFALIjojGUolMwrUMU5y7Y43_JLdhXj10oJSSpjdFx4Gix3Po2zmXhMzvtx-eQ-uGayc-TfYxr47BaX3GJXNtg4uKmL1-yiN1O0N_--Yx9Pj-_7l_xwfH7dPxzyFhWk3JhGk2qrsjLadlWnRNMXxgrsFelOSyuNtJURDZImbAT1QpbCYAFSSQ2y3DH8622DizHYvvZhnRp-aoR6-16ffC9_ASWTS-I</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Tamaki, Mitsushi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201512</creationdate><title>On the optimal stopping problems with monotone thresholds</title><author>Tamaki, Mitsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-aab897c636a8ed6d74bf2ae41f798d85e5a5e6a4b19891b49f4534a1205758053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamaki, Mitsushi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamaki, Mitsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the optimal stopping problems with monotone thresholds</atitle><jtitle>Journal of applied probability</jtitle><date>2015-12</date><risdate>2015</risdate><volume>52</volume><issue>4</issue><spage>926</spage><epage>940</epage><pages>926-940</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson
et al.
(1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.</abstract><doi>10.1017/S0021900200112999</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 2015-12, Vol.52 (4), p.926-940 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0021900200112999 |
source | Cambridge Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
title | On the optimal stopping problems with monotone thresholds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20optimal%20stopping%20problems%20with%20monotone%20thresholds&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Tamaki,%20Mitsushi&rft.date=2015-12&rft.volume=52&rft.issue=4&rft.spage=926&rft.epage=940&rft.pages=926-940&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200112999&rft_dat=%3Ccrossref%3E10_1017_S0021900200112999%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |