Consistency of Hill's estimator for dependent data

Consider a sequence of possibly dependent random variables having the same marginal distribution F , whose tail 1− F is regularly varying at infinity with an unknown index − α < 0 which is to be estimated. For i.i.d. data or for dependent sequences with the same marginal satisfying mixing conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1995-03, Vol.32 (1), p.139-167
Hauptverfasser: Resnick, Sidney, Stărică, Cătălin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 1
container_start_page 139
container_title Journal of applied probability
container_volume 32
creator Resnick, Sidney
Stărică, Cătălin
description Consider a sequence of possibly dependent random variables having the same marginal distribution F , whose tail 1− F is regularly varying at infinity with an unknown index − α < 0 which is to be estimated. For i.i.d. data or for dependent sequences with the same marginal satisfying mixing conditions, it is well known that Hill's estimator is consistent for α −1 and asymptotically normally distributed. The purpose of this paper is to emphasize the central role played by the tail empirical process for the problem of consistency. This approach allows us to easily prove Hill's estimator is consistent for infinite order moving averages of independent random variables. Our method also suffices to prove that, for the case of an AR model, the unknown index can be estimated using the residuals generated by the estimation of the autoregressive parameters.
doi_str_mv 10.1017/S0021900200102621
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200102621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200102621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1811-219e863c09298bbc4e0734379d0defc4ea4b90b2cd6a8bcc40d8b62390fdaa03</originalsourceid><addsrcrecordid>eNplj09LxDAQxYO4YN31A3jrzVN1Jsk2yVGKusKCB_de8mcCldouTS777U3Rm4d5w-M3DO8xdo_wiIDq6ROAoykCgMBbjlesQqn2TQuKX7Nqxc3Kb9htSl_lSu6Nqhjv5ikNKdPkL_Uc68Mwjg-pppSHb5vnpY5lAp1pCjTlOthsd2wT7Zjo7m9v2en15dQdmuPH23v3fGw8asSmxCHdCg-GG-2clwRKSKFMgECxWCudAcd9aK123ksI2rVcGIjBWhBbhr9v_TKntFDsz0vJtFx6hH7t3P_rLH4AyGRIrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Consistency of Hill's estimator for dependent data</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Resnick, Sidney ; Stărică, Cătălin</creator><creatorcontrib>Resnick, Sidney ; Stărică, Cătălin</creatorcontrib><description>Consider a sequence of possibly dependent random variables having the same marginal distribution F , whose tail 1− F is regularly varying at infinity with an unknown index − α &lt; 0 which is to be estimated. For i.i.d. data or for dependent sequences with the same marginal satisfying mixing conditions, it is well known that Hill's estimator is consistent for α −1 and asymptotically normally distributed. The purpose of this paper is to emphasize the central role played by the tail empirical process for the problem of consistency. This approach allows us to easily prove Hill's estimator is consistent for infinite order moving averages of independent random variables. Our method also suffices to prove that, for the case of an AR model, the unknown index can be estimated using the residuals generated by the estimation of the autoregressive parameters.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200102621</identifier><language>eng</language><ispartof>Journal of applied probability, 1995-03, Vol.32 (1), p.139-167</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1811-219e863c09298bbc4e0734379d0defc4ea4b90b2cd6a8bcc40d8b62390fdaa03</citedby><cites>FETCH-LOGICAL-c1811-219e863c09298bbc4e0734379d0defc4ea4b90b2cd6a8bcc40d8b62390fdaa03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Resnick, Sidney</creatorcontrib><creatorcontrib>Stărică, Cătălin</creatorcontrib><title>Consistency of Hill's estimator for dependent data</title><title>Journal of applied probability</title><description>Consider a sequence of possibly dependent random variables having the same marginal distribution F , whose tail 1− F is regularly varying at infinity with an unknown index − α &lt; 0 which is to be estimated. For i.i.d. data or for dependent sequences with the same marginal satisfying mixing conditions, it is well known that Hill's estimator is consistent for α −1 and asymptotically normally distributed. The purpose of this paper is to emphasize the central role played by the tail empirical process for the problem of consistency. This approach allows us to easily prove Hill's estimator is consistent for infinite order moving averages of independent random variables. Our method also suffices to prove that, for the case of an AR model, the unknown index can be estimated using the residuals generated by the estimation of the autoregressive parameters.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNplj09LxDAQxYO4YN31A3jrzVN1Jsk2yVGKusKCB_de8mcCldouTS777U3Rm4d5w-M3DO8xdo_wiIDq6ROAoykCgMBbjlesQqn2TQuKX7Nqxc3Kb9htSl_lSu6Nqhjv5ikNKdPkL_Uc68Mwjg-pppSHb5vnpY5lAp1pCjTlOthsd2wT7Zjo7m9v2en15dQdmuPH23v3fGw8asSmxCHdCg-GG-2clwRKSKFMgECxWCudAcd9aK123ksI2rVcGIjBWhBbhr9v_TKntFDsz0vJtFx6hH7t3P_rLH4AyGRIrQ</recordid><startdate>199503</startdate><enddate>199503</enddate><creator>Resnick, Sidney</creator><creator>Stărică, Cătălin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199503</creationdate><title>Consistency of Hill's estimator for dependent data</title><author>Resnick, Sidney ; Stărică, Cătălin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1811-219e863c09298bbc4e0734379d0defc4ea4b90b2cd6a8bcc40d8b62390fdaa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Resnick, Sidney</creatorcontrib><creatorcontrib>Stărică, Cătălin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Resnick, Sidney</au><au>Stărică, Cătălin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistency of Hill's estimator for dependent data</atitle><jtitle>Journal of applied probability</jtitle><date>1995-03</date><risdate>1995</risdate><volume>32</volume><issue>1</issue><spage>139</spage><epage>167</epage><pages>139-167</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>Consider a sequence of possibly dependent random variables having the same marginal distribution F , whose tail 1− F is regularly varying at infinity with an unknown index − α &lt; 0 which is to be estimated. For i.i.d. data or for dependent sequences with the same marginal satisfying mixing conditions, it is well known that Hill's estimator is consistent for α −1 and asymptotically normally distributed. The purpose of this paper is to emphasize the central role played by the tail empirical process for the problem of consistency. This approach allows us to easily prove Hill's estimator is consistent for infinite order moving averages of independent random variables. Our method also suffices to prove that, for the case of an AR model, the unknown index can be estimated using the residuals generated by the estimation of the autoregressive parameters.</abstract><doi>10.1017/S0021900200102621</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1995-03, Vol.32 (1), p.139-167
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_1017_S0021900200102621
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
title Consistency of Hill's estimator for dependent data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistency%20of%20Hill's%20estimator%20for%20dependent%20data&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Resnick,%20Sidney&rft.date=1995-03&rft.volume=32&rft.issue=1&rft.spage=139&rft.epage=167&rft.pages=139-167&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200102621&rft_dat=%3Ccrossref%3E10_1017_S0021900200102621%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true