The convergence of a branching Brownian motion used as a model describing the spread of an epidemic

A spatial epidemic process where the individuals are located at positions in the Euclidean space R 2 is considered. The infective individuals, with an infection period that is exponentially distributed with parameter µ , move in R 2 according to a Brownian motion with a diffusion coefficient σ 2 . T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1980-06, Vol.17 (2), p.301-312
1. Verfasser: Wang, Frank J. S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 2
container_start_page 301
container_title Journal of applied probability
container_volume 17
creator Wang, Frank J. S.
description A spatial epidemic process where the individuals are located at positions in the Euclidean space R 2 is considered. The infective individuals, with an infection period that is exponentially distributed with parameter µ , move in R 2 according to a Brownian motion with a diffusion coefficient σ 2 . The susceptible individuals may also move. But we shall use the approximation that they remain unchanged in numbers and therefore assume that the averaged ‘density' of susceptibles per unit area is the same throughout space and time. The transition probability rate of infection of a susceptible in the infinitesimal element of area dy by an infective in dx is assumed to be a function h ( x – y |) of the distance | x – y | between x and y. Then our process can be considered as a two-dimensional birth and death Brownian motion. Let be the number of infective individuals in the set D at time t and . The almost everywhere convergence of the random variables to a limit random variable W ( D ) is established.
doi_str_mv 10.1017/S0021900200047136
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200047136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200047136</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1017_S00219002000471363</originalsourceid><addsrcrecordid>eNqdj7FuwkAQRE8RkWIIH5Buf8DJLhhOtESg9KG3jrs1HMJ31i4hyt_HRnTp0swU82akMeaF8JWQ7Nsn4oxWvSBiZWm-fDAFVXZRLtHORqYY4nLIn8xY9YRI1WJlC-N3Rwaf05XlwMkz5AYc7MUlf4zpAGvJ3ym6BG2-xJzgSzmA055pc-AzBFYvcT-gl35JO2EXbiMJuIuB2-ifzWPjzsrTu08MbTe794_SS1YVbupOYuvkpyashzf1nzfz_3R-AcnqUV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The convergence of a branching Brownian motion used as a model describing the spread of an epidemic</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Wang, Frank J. S.</creator><creatorcontrib>Wang, Frank J. S.</creatorcontrib><description>A spatial epidemic process where the individuals are located at positions in the Euclidean space R 2 is considered. The infective individuals, with an infection period that is exponentially distributed with parameter µ , move in R 2 according to a Brownian motion with a diffusion coefficient σ 2 . The susceptible individuals may also move. But we shall use the approximation that they remain unchanged in numbers and therefore assume that the averaged ‘density' of susceptibles per unit area is the same throughout space and time. The transition probability rate of infection of a susceptible in the infinitesimal element of area dy by an infective in dx is assumed to be a function h ( x – y |) of the distance | x – y | between x and y. Then our process can be considered as a two-dimensional birth and death Brownian motion. Let be the number of infective individuals in the set D at time t and . The almost everywhere convergence of the random variables to a limit random variable W ( D ) is established.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200047136</identifier><language>eng</language><ispartof>Journal of applied probability, 1980-06, Vol.17 (2), p.301-312</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1017_S00219002000471363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Frank J. S.</creatorcontrib><title>The convergence of a branching Brownian motion used as a model describing the spread of an epidemic</title><title>Journal of applied probability</title><description>A spatial epidemic process where the individuals are located at positions in the Euclidean space R 2 is considered. The infective individuals, with an infection period that is exponentially distributed with parameter µ , move in R 2 according to a Brownian motion with a diffusion coefficient σ 2 . The susceptible individuals may also move. But we shall use the approximation that they remain unchanged in numbers and therefore assume that the averaged ‘density' of susceptibles per unit area is the same throughout space and time. The transition probability rate of infection of a susceptible in the infinitesimal element of area dy by an infective in dx is assumed to be a function h ( x – y |) of the distance | x – y | between x and y. Then our process can be considered as a two-dimensional birth and death Brownian motion. Let be the number of infective individuals in the set D at time t and . The almost everywhere convergence of the random variables to a limit random variable W ( D ) is established.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNqdj7FuwkAQRE8RkWIIH5Buf8DJLhhOtESg9KG3jrs1HMJ31i4hyt_HRnTp0swU82akMeaF8JWQ7Nsn4oxWvSBiZWm-fDAFVXZRLtHORqYY4nLIn8xY9YRI1WJlC-N3Rwaf05XlwMkz5AYc7MUlf4zpAGvJ3ym6BG2-xJzgSzmA055pc-AzBFYvcT-gl35JO2EXbiMJuIuB2-ifzWPjzsrTu08MbTe794_SS1YVbupOYuvkpyashzf1nzfz_3R-AcnqUV8</recordid><startdate>198006</startdate><enddate>198006</enddate><creator>Wang, Frank J. S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198006</creationdate><title>The convergence of a branching Brownian motion used as a model describing the spread of an epidemic</title><author>Wang, Frank J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1017_S00219002000471363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Frank J. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Frank J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The convergence of a branching Brownian motion used as a model describing the spread of an epidemic</atitle><jtitle>Journal of applied probability</jtitle><date>1980-06</date><risdate>1980</risdate><volume>17</volume><issue>2</issue><spage>301</spage><epage>312</epage><pages>301-312</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>A spatial epidemic process where the individuals are located at positions in the Euclidean space R 2 is considered. The infective individuals, with an infection period that is exponentially distributed with parameter µ , move in R 2 according to a Brownian motion with a diffusion coefficient σ 2 . The susceptible individuals may also move. But we shall use the approximation that they remain unchanged in numbers and therefore assume that the averaged ‘density' of susceptibles per unit area is the same throughout space and time. The transition probability rate of infection of a susceptible in the infinitesimal element of area dy by an infective in dx is assumed to be a function h ( x – y |) of the distance | x – y | between x and y. Then our process can be considered as a two-dimensional birth and death Brownian motion. Let be the number of infective individuals in the set D at time t and . The almost everywhere convergence of the random variables to a limit random variable W ( D ) is established.</abstract><doi>10.1017/S0021900200047136</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1980-06, Vol.17 (2), p.301-312
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_1017_S0021900200047136
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
title The convergence of a branching Brownian motion used as a model describing the spread of an epidemic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20convergence%20of%20a%20branching%20Brownian%20motion%20used%20as%20a%20model%20describing%20the%20spread%20of%20an%20epidemic&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Wang,%20Frank%20J.%20S.&rft.date=1980-06&rft.volume=17&rft.issue=2&rft.spage=301&rft.epage=312&rft.pages=301-312&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200047136&rft_dat=%3Ccrossref%3E10_1017_S0021900200047136%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true