The convergence of a branching Brownian motion used as a model describing the spread of an epidemic
A spatial epidemic process where the individuals are located at positions in the Euclidean space R 2 is considered. The infective individuals, with an infection period that is exponentially distributed with parameter µ , move in R 2 according to a Brownian motion with a diffusion coefficient σ 2 . T...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1980-06, Vol.17 (2), p.301-312 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | 2 |
container_start_page | 301 |
container_title | Journal of applied probability |
container_volume | 17 |
creator | Wang, Frank J. S. |
description | A spatial epidemic process where the individuals are located at positions in the Euclidean space
R
2
is considered. The infective individuals, with an infection period that is exponentially distributed with parameter
µ
, move in
R
2
according to a Brownian motion with a diffusion coefficient
σ
2
. The susceptible individuals may also move. But we shall use the approximation that they remain unchanged in numbers and therefore assume that the averaged ‘density' of susceptibles per unit area is the same throughout space and time. The transition probability rate of infection of a susceptible in the infinitesimal element of area
dy
by an infective in
dx
is assumed to be a function
h
(
x – y
|) of the distance |
x – y
| between
x
and y. Then our process can be considered as a two-dimensional birth and death Brownian motion. Let
be the number of infective individuals in the set
D
at time
t
and
. The almost everywhere convergence of the random variables
to a limit random variable
W
(
D
) is established. |
doi_str_mv | 10.1017/S0021900200047136 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200047136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200047136</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1017_S00219002000471363</originalsourceid><addsrcrecordid>eNqdj7FuwkAQRE8RkWIIH5Buf8DJLhhOtESg9KG3jrs1HMJ31i4hyt_HRnTp0swU82akMeaF8JWQ7Nsn4oxWvSBiZWm-fDAFVXZRLtHORqYY4nLIn8xY9YRI1WJlC-N3Rwaf05XlwMkz5AYc7MUlf4zpAGvJ3ym6BG2-xJzgSzmA055pc-AzBFYvcT-gl35JO2EXbiMJuIuB2-ifzWPjzsrTu08MbTe794_SS1YVbupOYuvkpyashzf1nzfz_3R-AcnqUV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The convergence of a branching Brownian motion used as a model describing the spread of an epidemic</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Wang, Frank J. S.</creator><creatorcontrib>Wang, Frank J. S.</creatorcontrib><description>A spatial epidemic process where the individuals are located at positions in the Euclidean space
R
2
is considered. The infective individuals, with an infection period that is exponentially distributed with parameter
µ
, move in
R
2
according to a Brownian motion with a diffusion coefficient
σ
2
. The susceptible individuals may also move. But we shall use the approximation that they remain unchanged in numbers and therefore assume that the averaged ‘density' of susceptibles per unit area is the same throughout space and time. The transition probability rate of infection of a susceptible in the infinitesimal element of area
dy
by an infective in
dx
is assumed to be a function
h
(
x – y
|) of the distance |
x – y
| between
x
and y. Then our process can be considered as a two-dimensional birth and death Brownian motion. Let
be the number of infective individuals in the set
D
at time
t
and
. The almost everywhere convergence of the random variables
to a limit random variable
W
(
D
) is established.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200047136</identifier><language>eng</language><ispartof>Journal of applied probability, 1980-06, Vol.17 (2), p.301-312</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1017_S00219002000471363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Frank J. S.</creatorcontrib><title>The convergence of a branching Brownian motion used as a model describing the spread of an epidemic</title><title>Journal of applied probability</title><description>A spatial epidemic process where the individuals are located at positions in the Euclidean space
R
2
is considered. The infective individuals, with an infection period that is exponentially distributed with parameter
µ
, move in
R
2
according to a Brownian motion with a diffusion coefficient
σ
2
. The susceptible individuals may also move. But we shall use the approximation that they remain unchanged in numbers and therefore assume that the averaged ‘density' of susceptibles per unit area is the same throughout space and time. The transition probability rate of infection of a susceptible in the infinitesimal element of area
dy
by an infective in
dx
is assumed to be a function
h
(
x – y
|) of the distance |
x – y
| between
x
and y. Then our process can be considered as a two-dimensional birth and death Brownian motion. Let
be the number of infective individuals in the set
D
at time
t
and
. The almost everywhere convergence of the random variables
to a limit random variable
W
(
D
) is established.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNqdj7FuwkAQRE8RkWIIH5Buf8DJLhhOtESg9KG3jrs1HMJ31i4hyt_HRnTp0swU82akMeaF8JWQ7Nsn4oxWvSBiZWm-fDAFVXZRLtHORqYY4nLIn8xY9YRI1WJlC-N3Rwaf05XlwMkz5AYc7MUlf4zpAGvJ3ym6BG2-xJzgSzmA055pc-AzBFYvcT-gl35JO2EXbiMJuIuB2-ifzWPjzsrTu08MbTe794_SS1YVbupOYuvkpyashzf1nzfz_3R-AcnqUV8</recordid><startdate>198006</startdate><enddate>198006</enddate><creator>Wang, Frank J. S.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198006</creationdate><title>The convergence of a branching Brownian motion used as a model describing the spread of an epidemic</title><author>Wang, Frank J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1017_S00219002000471363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Frank J. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Frank J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The convergence of a branching Brownian motion used as a model describing the spread of an epidemic</atitle><jtitle>Journal of applied probability</jtitle><date>1980-06</date><risdate>1980</risdate><volume>17</volume><issue>2</issue><spage>301</spage><epage>312</epage><pages>301-312</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>A spatial epidemic process where the individuals are located at positions in the Euclidean space
R
2
is considered. The infective individuals, with an infection period that is exponentially distributed with parameter
µ
, move in
R
2
according to a Brownian motion with a diffusion coefficient
σ
2
. The susceptible individuals may also move. But we shall use the approximation that they remain unchanged in numbers and therefore assume that the averaged ‘density' of susceptibles per unit area is the same throughout space and time. The transition probability rate of infection of a susceptible in the infinitesimal element of area
dy
by an infective in
dx
is assumed to be a function
h
(
x – y
|) of the distance |
x – y
| between
x
and y. Then our process can be considered as a two-dimensional birth and death Brownian motion. Let
be the number of infective individuals in the set
D
at time
t
and
. The almost everywhere convergence of the random variables
to a limit random variable
W
(
D
) is established.</abstract><doi>10.1017/S0021900200047136</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 1980-06, Vol.17 (2), p.301-312 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0021900200047136 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
title | The convergence of a branching Brownian motion used as a model describing the spread of an epidemic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20convergence%20of%20a%20branching%20Brownian%20motion%20used%20as%20a%20model%20describing%20the%20spread%20of%20an%20epidemic&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Wang,%20Frank%20J.%20S.&rft.date=1980-06&rft.volume=17&rft.issue=2&rft.spage=301&rft.epage=312&rft.pages=301-312&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200047136&rft_dat=%3Ccrossref%3E10_1017_S0021900200047136%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |