Nested Monte Carlo study of random packing on the sphere

We consider two random sequential packing processes in which spheres of unit radius are randomly attached to the surface of a fixed unit sphere. Independent random spheres are generated and added successively, provided there is no overlap with previous spheres. In model 1, the process stops when a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1991-09, Vol.28 (3), p.539-552
Hauptverfasser: Rodgers, R. P. C., Baddeley, A. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 552
container_issue 3
container_start_page 539
container_title Journal of applied probability
container_volume 28
creator Rodgers, R. P. C.
Baddeley, A. J.
description We consider two random sequential packing processes in which spheres of unit radius are randomly attached to the surface of a fixed unit sphere. Independent random spheres are generated and added successively, provided there is no overlap with previous spheres. In model 1, the process stops when a trial sphere intersects one of the previously-accepted spheres. In model 2, random sequential packing , any such overlapping trial sphere is discarded and the next random sphere is tried, until it is impossible to add any further spheres. Previous workers have conjectured convincingly that no exact analytical solution is possible for this type of problem. We use Monte Carlo simulation methods to estimate transition probabilities for the two models. Because some probabilities are extremely small, a simulation using independent repetitions of the model would be inefficient. We designed a branching process of conditionally binomial trials, and performed over 10 8 trials on a supercomputer.
doi_str_mv 10.1017/S0021900200042406
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200042406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200042406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c856-f88dcdbed733f8f3267da65e860ef6c90019a67280b3c5a9c6a13240fba2375b3</originalsourceid><addsrcrecordid>eNplj7tOxDAURC0EEmHhA-j8A4ZrO36kRBEvaYGC7SPHvmYXduPIDsX-PYmgo5kpRhqdQ8g1hxsO3Ny-AwjezAEAtahBn5CK10YxDUackmqZ2bKfk4tSPgF4rRpTEfuKZcJAX9IwIW1d3idapu9wpCnS7IaQDnR0_ms3fNA00GmLtIxbzHhJzqLbF7z66xXZPNxv2ie2fnt8bu_WzFulWbQ2-NBjMFJGG6XQJjit0GrAqP0MxBunjbDQS69c47XjcsaPvRPSqF6uCP-99TmVkjF2Y94dXD52HLrFvPtnLn8AqTBKRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nested Monte Carlo study of random packing on the sphere</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Rodgers, R. P. C. ; Baddeley, A. J.</creator><creatorcontrib>Rodgers, R. P. C. ; Baddeley, A. J.</creatorcontrib><description>We consider two random sequential packing processes in which spheres of unit radius are randomly attached to the surface of a fixed unit sphere. Independent random spheres are generated and added successively, provided there is no overlap with previous spheres. In model 1, the process stops when a trial sphere intersects one of the previously-accepted spheres. In model 2, random sequential packing , any such overlapping trial sphere is discarded and the next random sphere is tried, until it is impossible to add any further spheres. Previous workers have conjectured convincingly that no exact analytical solution is possible for this type of problem. We use Monte Carlo simulation methods to estimate transition probabilities for the two models. Because some probabilities are extremely small, a simulation using independent repetitions of the model would be inefficient. We designed a branching process of conditionally binomial trials, and performed over 10 8 trials on a supercomputer.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200042406</identifier><language>eng</language><ispartof>Journal of applied probability, 1991-09, Vol.28 (3), p.539-552</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c856-f88dcdbed733f8f3267da65e860ef6c90019a67280b3c5a9c6a13240fba2375b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Rodgers, R. P. C.</creatorcontrib><creatorcontrib>Baddeley, A. J.</creatorcontrib><title>Nested Monte Carlo study of random packing on the sphere</title><title>Journal of applied probability</title><description>We consider two random sequential packing processes in which spheres of unit radius are randomly attached to the surface of a fixed unit sphere. Independent random spheres are generated and added successively, provided there is no overlap with previous spheres. In model 1, the process stops when a trial sphere intersects one of the previously-accepted spheres. In model 2, random sequential packing , any such overlapping trial sphere is discarded and the next random sphere is tried, until it is impossible to add any further spheres. Previous workers have conjectured convincingly that no exact analytical solution is possible for this type of problem. We use Monte Carlo simulation methods to estimate transition probabilities for the two models. Because some probabilities are extremely small, a simulation using independent repetitions of the model would be inefficient. We designed a branching process of conditionally binomial trials, and performed over 10 8 trials on a supercomputer.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNplj7tOxDAURC0EEmHhA-j8A4ZrO36kRBEvaYGC7SPHvmYXduPIDsX-PYmgo5kpRhqdQ8g1hxsO3Ny-AwjezAEAtahBn5CK10YxDUackmqZ2bKfk4tSPgF4rRpTEfuKZcJAX9IwIW1d3idapu9wpCnS7IaQDnR0_ms3fNA00GmLtIxbzHhJzqLbF7z66xXZPNxv2ie2fnt8bu_WzFulWbQ2-NBjMFJGG6XQJjit0GrAqP0MxBunjbDQS69c47XjcsaPvRPSqF6uCP-99TmVkjF2Y94dXD52HLrFvPtnLn8AqTBKRA</recordid><startdate>199109</startdate><enddate>199109</enddate><creator>Rodgers, R. P. C.</creator><creator>Baddeley, A. J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199109</creationdate><title>Nested Monte Carlo study of random packing on the sphere</title><author>Rodgers, R. P. C. ; Baddeley, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c856-f88dcdbed733f8f3267da65e860ef6c90019a67280b3c5a9c6a13240fba2375b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodgers, R. P. C.</creatorcontrib><creatorcontrib>Baddeley, A. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodgers, R. P. C.</au><au>Baddeley, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nested Monte Carlo study of random packing on the sphere</atitle><jtitle>Journal of applied probability</jtitle><date>1991-09</date><risdate>1991</risdate><volume>28</volume><issue>3</issue><spage>539</spage><epage>552</epage><pages>539-552</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>We consider two random sequential packing processes in which spheres of unit radius are randomly attached to the surface of a fixed unit sphere. Independent random spheres are generated and added successively, provided there is no overlap with previous spheres. In model 1, the process stops when a trial sphere intersects one of the previously-accepted spheres. In model 2, random sequential packing , any such overlapping trial sphere is discarded and the next random sphere is tried, until it is impossible to add any further spheres. Previous workers have conjectured convincingly that no exact analytical solution is possible for this type of problem. We use Monte Carlo simulation methods to estimate transition probabilities for the two models. Because some probabilities are extremely small, a simulation using independent repetitions of the model would be inefficient. We designed a branching process of conditionally binomial trials, and performed over 10 8 trials on a supercomputer.</abstract><doi>10.1017/S0021900200042406</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1991-09, Vol.28 (3), p.539-552
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_1017_S0021900200042406
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
title Nested Monte Carlo study of random packing on the sphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nested%20Monte%20Carlo%20study%20of%20random%20packing%20on%20the%20sphere&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Rodgers,%20R.%20P.%20C.&rft.date=1991-09&rft.volume=28&rft.issue=3&rft.spage=539&rft.epage=552&rft.pages=539-552&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200042406&rft_dat=%3Ccrossref%3E10_1017_S0021900200042406%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true