On a discrete-time non-zero-sum Dynkin problem with monotonicity
We consider a monotone case of the non-zero-sum stopping game with discrete time parameter which is called the Dynkin problem. Marner (1987) has investigated a stopping game with general monotone reward structures, but his monotonicity is too strong to apply our problem. We establish that there exis...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1991-06, Vol.28 (2), p.466-472 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 472 |
---|---|
container_issue | 2 |
container_start_page | 466 |
container_title | Journal of applied probability |
container_volume | 28 |
creator | Ohtsubo, Yoshio |
description | We consider a monotone case of the non-zero-sum stopping game with discrete time parameter which is called the Dynkin problem. Marner (1987) has investigated a stopping game with general monotone reward structures, but his monotonicity is too strong to apply our problem. We establish that there exists an explicit equilibrium point in our monotone case. We also give a simple example applicable to a duopolistic exit game. |
doi_str_mv | 10.1017/S0021900200039838 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200039838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200039838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c908-cbd2852629ca056a76d5969553fcd76c97e08ae4a2abcd1496836e10b44eea323</originalsourceid><addsrcrecordid>eNplkMtKxDAYRoMoWEcfwF1eIPrnnuyU8QoDs3D2JU1TjE6TIalIfXotunPzfYsDZ3EQuqRwRYHq6xcARu3PAAC3hpsj1FChJVGg2TFqFkwWforOan0DoEJa3aCbbcIO97H6EqZApjgGnHIiX6FkUj9GfDen95jwoeRuH0b8GadXPOaUp5yij9N8jk4Gt6_h4u9XaPdwv1s_kc328Xl9uyHegiG-65mRTDHrHUjltOqlVVZKPvheK291AOOCcMx1vqfCKsNVoNAJEYLjjK8Q_dX6kmstYWgPJY6uzC2FdinQ_ivAvwHgLk3h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a discrete-time non-zero-sum Dynkin problem with monotonicity</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>Ohtsubo, Yoshio</creator><creatorcontrib>Ohtsubo, Yoshio</creatorcontrib><description>We consider a monotone case of the non-zero-sum stopping game with discrete time parameter which is called the Dynkin problem. Marner (1987) has investigated a stopping game with general monotone reward structures, but his monotonicity is too strong to apply our problem. We establish that there exists an explicit equilibrium point in our monotone case. We also give a simple example applicable to a duopolistic exit game.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200039838</identifier><language>eng</language><ispartof>Journal of applied probability, 1991-06, Vol.28 (2), p.466-472</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c908-cbd2852629ca056a76d5969553fcd76c97e08ae4a2abcd1496836e10b44eea323</citedby><cites>FETCH-LOGICAL-c908-cbd2852629ca056a76d5969553fcd76c97e08ae4a2abcd1496836e10b44eea323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ohtsubo, Yoshio</creatorcontrib><title>On a discrete-time non-zero-sum Dynkin problem with monotonicity</title><title>Journal of applied probability</title><description>We consider a monotone case of the non-zero-sum stopping game with discrete time parameter which is called the Dynkin problem. Marner (1987) has investigated a stopping game with general monotone reward structures, but his monotonicity is too strong to apply our problem. We establish that there exists an explicit equilibrium point in our monotone case. We also give a simple example applicable to a duopolistic exit game.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNplkMtKxDAYRoMoWEcfwF1eIPrnnuyU8QoDs3D2JU1TjE6TIalIfXotunPzfYsDZ3EQuqRwRYHq6xcARu3PAAC3hpsj1FChJVGg2TFqFkwWforOan0DoEJa3aCbbcIO97H6EqZApjgGnHIiX6FkUj9GfDen95jwoeRuH0b8GadXPOaUp5yij9N8jk4Gt6_h4u9XaPdwv1s_kc328Xl9uyHegiG-65mRTDHrHUjltOqlVVZKPvheK291AOOCcMx1vqfCKsNVoNAJEYLjjK8Q_dX6kmstYWgPJY6uzC2FdinQ_ivAvwHgLk3h</recordid><startdate>199106</startdate><enddate>199106</enddate><creator>Ohtsubo, Yoshio</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199106</creationdate><title>On a discrete-time non-zero-sum Dynkin problem with monotonicity</title><author>Ohtsubo, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c908-cbd2852629ca056a76d5969553fcd76c97e08ae4a2abcd1496836e10b44eea323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohtsubo, Yoshio</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohtsubo, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a discrete-time non-zero-sum Dynkin problem with monotonicity</atitle><jtitle>Journal of applied probability</jtitle><date>1991-06</date><risdate>1991</risdate><volume>28</volume><issue>2</issue><spage>466</spage><epage>472</epage><pages>466-472</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>We consider a monotone case of the non-zero-sum stopping game with discrete time parameter which is called the Dynkin problem. Marner (1987) has investigated a stopping game with general monotone reward structures, but his monotonicity is too strong to apply our problem. We establish that there exists an explicit equilibrium point in our monotone case. We also give a simple example applicable to a duopolistic exit game.</abstract><doi>10.1017/S0021900200039838</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 1991-06, Vol.28 (2), p.466-472 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0021900200039838 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics |
title | On a discrete-time non-zero-sum Dynkin problem with monotonicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20discrete-time%20non-zero-sum%20Dynkin%20problem%20with%20monotonicity&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Ohtsubo,%20Yoshio&rft.date=1991-06&rft.volume=28&rft.issue=2&rft.spage=466&rft.epage=472&rft.pages=466-472&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200039838&rft_dat=%3Ccrossref%3E10_1017_S0021900200039838%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |