On a discrete-time non-zero-sum Dynkin problem with monotonicity

We consider a monotone case of the non-zero-sum stopping game with discrete time parameter which is called the Dynkin problem. Marner (1987) has investigated a stopping game with general monotone reward structures, but his monotonicity is too strong to apply our problem. We establish that there exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1991-06, Vol.28 (2), p.466-472
1. Verfasser: Ohtsubo, Yoshio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 472
container_issue 2
container_start_page 466
container_title Journal of applied probability
container_volume 28
creator Ohtsubo, Yoshio
description We consider a monotone case of the non-zero-sum stopping game with discrete time parameter which is called the Dynkin problem. Marner (1987) has investigated a stopping game with general monotone reward structures, but his monotonicity is too strong to apply our problem. We establish that there exists an explicit equilibrium point in our monotone case. We also give a simple example applicable to a duopolistic exit game.
doi_str_mv 10.1017/S0021900200039838
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200039838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200039838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c908-cbd2852629ca056a76d5969553fcd76c97e08ae4a2abcd1496836e10b44eea323</originalsourceid><addsrcrecordid>eNplkMtKxDAYRoMoWEcfwF1eIPrnnuyU8QoDs3D2JU1TjE6TIalIfXotunPzfYsDZ3EQuqRwRYHq6xcARu3PAAC3hpsj1FChJVGg2TFqFkwWforOan0DoEJa3aCbbcIO97H6EqZApjgGnHIiX6FkUj9GfDen95jwoeRuH0b8GadXPOaUp5yij9N8jk4Gt6_h4u9XaPdwv1s_kc328Xl9uyHegiG-65mRTDHrHUjltOqlVVZKPvheK291AOOCcMx1vqfCKsNVoNAJEYLjjK8Q_dX6kmstYWgPJY6uzC2FdinQ_ivAvwHgLk3h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a discrete-time non-zero-sum Dynkin problem with monotonicity</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Ohtsubo, Yoshio</creator><creatorcontrib>Ohtsubo, Yoshio</creatorcontrib><description>We consider a monotone case of the non-zero-sum stopping game with discrete time parameter which is called the Dynkin problem. Marner (1987) has investigated a stopping game with general monotone reward structures, but his monotonicity is too strong to apply our problem. We establish that there exists an explicit equilibrium point in our monotone case. We also give a simple example applicable to a duopolistic exit game.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200039838</identifier><language>eng</language><ispartof>Journal of applied probability, 1991-06, Vol.28 (2), p.466-472</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c908-cbd2852629ca056a76d5969553fcd76c97e08ae4a2abcd1496836e10b44eea323</citedby><cites>FETCH-LOGICAL-c908-cbd2852629ca056a76d5969553fcd76c97e08ae4a2abcd1496836e10b44eea323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ohtsubo, Yoshio</creatorcontrib><title>On a discrete-time non-zero-sum Dynkin problem with monotonicity</title><title>Journal of applied probability</title><description>We consider a monotone case of the non-zero-sum stopping game with discrete time parameter which is called the Dynkin problem. Marner (1987) has investigated a stopping game with general monotone reward structures, but his monotonicity is too strong to apply our problem. We establish that there exists an explicit equilibrium point in our monotone case. We also give a simple example applicable to a duopolistic exit game.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNplkMtKxDAYRoMoWEcfwF1eIPrnnuyU8QoDs3D2JU1TjE6TIalIfXotunPzfYsDZ3EQuqRwRYHq6xcARu3PAAC3hpsj1FChJVGg2TFqFkwWforOan0DoEJa3aCbbcIO97H6EqZApjgGnHIiX6FkUj9GfDen95jwoeRuH0b8GadXPOaUp5yij9N8jk4Gt6_h4u9XaPdwv1s_kc328Xl9uyHegiG-65mRTDHrHUjltOqlVVZKPvheK291AOOCcMx1vqfCKsNVoNAJEYLjjK8Q_dX6kmstYWgPJY6uzC2FdinQ_ivAvwHgLk3h</recordid><startdate>199106</startdate><enddate>199106</enddate><creator>Ohtsubo, Yoshio</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199106</creationdate><title>On a discrete-time non-zero-sum Dynkin problem with monotonicity</title><author>Ohtsubo, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c908-cbd2852629ca056a76d5969553fcd76c97e08ae4a2abcd1496836e10b44eea323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohtsubo, Yoshio</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohtsubo, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a discrete-time non-zero-sum Dynkin problem with monotonicity</atitle><jtitle>Journal of applied probability</jtitle><date>1991-06</date><risdate>1991</risdate><volume>28</volume><issue>2</issue><spage>466</spage><epage>472</epage><pages>466-472</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>We consider a monotone case of the non-zero-sum stopping game with discrete time parameter which is called the Dynkin problem. Marner (1987) has investigated a stopping game with general monotone reward structures, but his monotonicity is too strong to apply our problem. We establish that there exists an explicit equilibrium point in our monotone case. We also give a simple example applicable to a duopolistic exit game.</abstract><doi>10.1017/S0021900200039838</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1991-06, Vol.28 (2), p.466-472
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_1017_S0021900200039838
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
title On a discrete-time non-zero-sum Dynkin problem with monotonicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20discrete-time%20non-zero-sum%20Dynkin%20problem%20with%20monotonicity&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Ohtsubo,%20Yoshio&rft.date=1991-06&rft.volume=28&rft.issue=2&rft.spage=466&rft.epage=472&rft.pages=466-472&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200039838&rft_dat=%3Ccrossref%3E10_1017_S0021900200039838%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true