Analytical solution of finite capacity M/D/1 queues

Although the M / D /1/ N queueing model is well solved from a computational point of view, there is no known analytical expression of the queue length distribution. In this paper, we derive closed-form formulae for the distribution of the number of customers in the system in the finite-capacity M /...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2000-12, Vol.37 (4), p.1092-1098
Hauptverfasser: Brun, Olivier, Garcia, Jean-Marie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1098
container_issue 4
container_start_page 1092
container_title Journal of applied probability
container_volume 37
creator Brun, Olivier
Garcia, Jean-Marie
description Although the M / D /1/ N queueing model is well solved from a computational point of view, there is no known analytical expression of the queue length distribution. In this paper, we derive closed-form formulae for the distribution of the number of customers in the system in the finite-capacity M / D /1 queue. We also give an explicit solution for the mean queue length and the average waiting time.
doi_str_mv 10.1017/S0021900200018258
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200018258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200018258</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1017_S00219002000182583</originalsourceid><addsrcrecordid>eNqdjrsKwjAYhYMoWC8P4JYXqP3_Xkw7ihdcnHQPISQQiU1N0qFvrwU3N5dzhu8c-AjZIGwRkGU3gBybTwAA1nlVT0iCJavSHbB8SpIRpyOfk0UIj8-orBqWkGLfCjtEI4Wlwdk-GtdSp6k2rYmKStEJaeJAr9kxQ_rqVa_Cisy0sEGtv70keD7dD5dUeheCV5p33jyFHzgCH-34j13xz-cNG1o_tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical solution of finite capacity M/D/1 queues</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Brun, Olivier ; Garcia, Jean-Marie</creator><creatorcontrib>Brun, Olivier ; Garcia, Jean-Marie</creatorcontrib><description>Although the M / D /1/ N queueing model is well solved from a computational point of view, there is no known analytical expression of the queue length distribution. In this paper, we derive closed-form formulae for the distribution of the number of customers in the system in the finite-capacity M / D /1 queue. We also give an explicit solution for the mean queue length and the average waiting time.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200018258</identifier><language>eng</language><ispartof>Journal of applied probability, 2000-12, Vol.37 (4), p.1092-1098</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1017_S00219002000182583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brun, Olivier</creatorcontrib><creatorcontrib>Garcia, Jean-Marie</creatorcontrib><title>Analytical solution of finite capacity M/D/1 queues</title><title>Journal of applied probability</title><description>Although the M / D /1/ N queueing model is well solved from a computational point of view, there is no known analytical expression of the queue length distribution. In this paper, we derive closed-form formulae for the distribution of the number of customers in the system in the finite-capacity M / D /1 queue. We also give an explicit solution for the mean queue length and the average waiting time.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqdjrsKwjAYhYMoWC8P4JYXqP3_Xkw7ihdcnHQPISQQiU1N0qFvrwU3N5dzhu8c-AjZIGwRkGU3gBybTwAA1nlVT0iCJavSHbB8SpIRpyOfk0UIj8-orBqWkGLfCjtEI4Wlwdk-GtdSp6k2rYmKStEJaeJAr9kxQ_rqVa_Cisy0sEGtv70keD7dD5dUeheCV5p33jyFHzgCH-34j13xz-cNG1o_tA</recordid><startdate>200012</startdate><enddate>200012</enddate><creator>Brun, Olivier</creator><creator>Garcia, Jean-Marie</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200012</creationdate><title>Analytical solution of finite capacity M/D/1 queues</title><author>Brun, Olivier ; Garcia, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1017_S00219002000182583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brun, Olivier</creatorcontrib><creatorcontrib>Garcia, Jean-Marie</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brun, Olivier</au><au>Garcia, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solution of finite capacity M/D/1 queues</atitle><jtitle>Journal of applied probability</jtitle><date>2000-12</date><risdate>2000</risdate><volume>37</volume><issue>4</issue><spage>1092</spage><epage>1098</epage><pages>1092-1098</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>Although the M / D /1/ N queueing model is well solved from a computational point of view, there is no known analytical expression of the queue length distribution. In this paper, we derive closed-form formulae for the distribution of the number of customers in the system in the finite-capacity M / D /1 queue. We also give an explicit solution for the mean queue length and the average waiting time.</abstract><doi>10.1017/S0021900200018258</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2000-12, Vol.37 (4), p.1092-1098
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_1017_S0021900200018258
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
title Analytical solution of finite capacity M/D/1 queues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solution%20of%20finite%20capacity%20M/D/1%20queues&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Brun,%20Olivier&rft.date=2000-12&rft.volume=37&rft.issue=4&rft.spage=1092&rft.epage=1098&rft.pages=1092-1098&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200018258&rft_dat=%3Ccrossref%3E10_1017_S0021900200018258%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true