A Symmetry Property for a Class of Random Walks in Stationary Random Environments on Z

A correspondence formula between the laws of dual Markov chains on Z with two transition jumps is established. This formula contributes to the study of random walks in stationary random environments. Counterexamples with more than two jumps are exhibited.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2012-06, Vol.49 (2), p.338-350
Hauptverfasser: Derrien, Jean-Marc, Plantevin, Frédérique
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 2
container_start_page 338
container_title Journal of applied probability
container_volume 49
creator Derrien, Jean-Marc
Plantevin, Frédérique
description A correspondence formula between the laws of dual Markov chains on Z with two transition jumps is established. This formula contributes to the study of random walks in stationary random environments. Counterexamples with more than two jumps are exhibited.
doi_str_mv 10.1017/S0021900200009128
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200009128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200009128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-65276865f79baadee68359f45ebf85144f97474f8ecfc6dc1d26bfa38c69b0123</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMoWEd_gLv8gWpum-dyKOMDBhTrA9yUNE2g2iZDUoT-e1ucnXdx7uLjHA4HoWsgN0BA3NaEFKAWIcspKOQJyoAKlnMiilOUrThf-Tm6SOmLEKBMiQy9b3E9j6Od4oyfYzjYOM3YhYg1rgadEg4Ov2jfhRF_6OE74d7jetJTH7xeLEe08z99DH60flocHn9eojOnh2Svjn-D3u52r9VDvn-6f6y2-9yAIFPOWSG45MwJ1WrdWctlyZSjzLZOMqDUKUEFddIaZ3hnoCt463QpDVctgaLcIPjLNTGkFK1rDrEfl2YNkGYdpvk3TPkLBv1Vvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Symmetry Property for a Class of Random Walks in Stationary Random Environments on Z</title><source>Cambridge University Press Journals</source><source>JSTOR</source><creator>Derrien, Jean-Marc ; Plantevin, Frédérique</creator><creatorcontrib>Derrien, Jean-Marc ; Plantevin, Frédérique</creatorcontrib><description>A correspondence formula between the laws of dual Markov chains on Z with two transition jumps is established. This formula contributes to the study of random walks in stationary random environments. Counterexamples with more than two jumps are exhibited.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200009128</identifier><language>eng</language><ispartof>Journal of applied probability, 2012-06, Vol.49 (2), p.338-350</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-65276865f79baadee68359f45ebf85144f97474f8ecfc6dc1d26bfa38c69b0123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Derrien, Jean-Marc</creatorcontrib><creatorcontrib>Plantevin, Frédérique</creatorcontrib><title>A Symmetry Property for a Class of Random Walks in Stationary Random Environments on Z</title><title>Journal of applied probability</title><description>A correspondence formula between the laws of dual Markov chains on Z with two transition jumps is established. This formula contributes to the study of random walks in stationary random environments. Counterexamples with more than two jumps are exhibited.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNplkEtLxDAUhYMoWEd_gLv8gWpum-dyKOMDBhTrA9yUNE2g2iZDUoT-e1ucnXdx7uLjHA4HoWsgN0BA3NaEFKAWIcspKOQJyoAKlnMiilOUrThf-Tm6SOmLEKBMiQy9b3E9j6Od4oyfYzjYOM3YhYg1rgadEg4Ov2jfhRF_6OE74d7jetJTH7xeLEe08z99DH60flocHn9eojOnh2Svjn-D3u52r9VDvn-6f6y2-9yAIFPOWSG45MwJ1WrdWctlyZSjzLZOMqDUKUEFddIaZ3hnoCt463QpDVctgaLcIPjLNTGkFK1rDrEfl2YNkGYdpvk3TPkLBv1Vvg</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Derrien, Jean-Marc</creator><creator>Plantevin, Frédérique</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201206</creationdate><title>A Symmetry Property for a Class of Random Walks in Stationary Random Environments on Z</title><author>Derrien, Jean-Marc ; Plantevin, Frédérique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-65276865f79baadee68359f45ebf85144f97474f8ecfc6dc1d26bfa38c69b0123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derrien, Jean-Marc</creatorcontrib><creatorcontrib>Plantevin, Frédérique</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derrien, Jean-Marc</au><au>Plantevin, Frédérique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Symmetry Property for a Class of Random Walks in Stationary Random Environments on Z</atitle><jtitle>Journal of applied probability</jtitle><date>2012-06</date><risdate>2012</risdate><volume>49</volume><issue>2</issue><spage>338</spage><epage>350</epage><pages>338-350</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>A correspondence formula between the laws of dual Markov chains on Z with two transition jumps is established. This formula contributes to the study of random walks in stationary random environments. Counterexamples with more than two jumps are exhibited.</abstract><doi>10.1017/S0021900200009128</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2012-06, Vol.49 (2), p.338-350
issn 0021-9002
1475-6072
language eng
recordid cdi_crossref_primary_10_1017_S0021900200009128
source Cambridge University Press Journals; JSTOR
title A Symmetry Property for a Class of Random Walks in Stationary Random Environments on Z
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Symmetry%20Property%20for%20a%20Class%20of%20Random%20Walks%20in%20Stationary%20Random%20Environments%20on%20Z&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Derrien,%20Jean-Marc&rft.date=2012-06&rft.volume=49&rft.issue=2&rft.spage=338&rft.epage=350&rft.pages=338-350&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200009128&rft_dat=%3Ccrossref%3E10_1017_S0021900200009128%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true