Generalized Coupon Collection: The Superlinear Case
We consider a generalized form of the coupon collection problem in which a random number, S , of balls is drawn at each stage from an urn initially containing n white balls (coupons). Each white ball drawn is colored red and returned to the urn; red balls drawn are simply returned to the urn. The qu...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2011-03, Vol.48 (1), p.189-199 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 1 |
container_start_page | 189 |
container_title | Journal of applied probability |
container_volume | 48 |
creator | Smythe, R. T. |
description | We consider a generalized form of the coupon collection problem in which a random number,
S
, of balls is drawn at each stage from an urn initially containing
n
white balls (coupons). Each white ball drawn is colored red and returned to the urn; red balls drawn are simply returned to the urn. The question considered is then: how many white balls (uncollected coupons) remain in the urn after the
k
n
draws? Our analysis is asymptotic as
n
→ ∞. We concentrate on the case when
k
n
draws are made, where
k
n
/
n
→ ∞ (the superlinear case), although we sketch known results for other ranges of
k
n
. A Gaussian limit is obtained via a martingale representation for the lower superlinear range, and a Poisson limit is derived for the upper boundary of this range via the Chen-Stein approximation. |
doi_str_mv | 10.1017/S0021900200007713 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0021900200007713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0021900200007713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1993-ffbc393d011a124043ea26732f48e7e6206dfe3c5f8030a096603f7d667a79b83</originalsourceid><addsrcrecordid>eNplj8FKxEAQRAdxwbjrB3jLD0S7p5PpjDcJugoLHnY9h9mkByMxCTPuQb_eBL1Zh6rDg4Kn1DXCDQLy7R5Ao50L5jAjnakEcy4yA6zPVbLgbOEX6jLGdwDMC8uJoq0MElzffUubVuNpGod5-l6az24c7tLDm6T70ySh7wZxIa1clI1aeddHufrbtXp9fDhUT9nuZftc3e-yBq2lzPtjQ5ZaQHSoc8hJnDZM2uelsBgNpvVCTeFLIHBgjQHy3BrDju2xpLXC398mjDEG8fUUug8XvmqEerGu_1nTDw_0SBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Coupon Collection: The Superlinear Case</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Smythe, R. T.</creator><creatorcontrib>Smythe, R. T.</creatorcontrib><description>We consider a generalized form of the coupon collection problem in which a random number,
S
, of balls is drawn at each stage from an urn initially containing
n
white balls (coupons). Each white ball drawn is colored red and returned to the urn; red balls drawn are simply returned to the urn. The question considered is then: how many white balls (uncollected coupons) remain in the urn after the
k
n
draws? Our analysis is asymptotic as
n
→ ∞. We concentrate on the case when
k
n
draws are made, where
k
n
/
n
→ ∞ (the superlinear case), although we sketch known results for other ranges of
k
n
. A Gaussian limit is obtained via a martingale representation for the lower superlinear range, and a Poisson limit is derived for the upper boundary of this range via the Chen-Stein approximation.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/S0021900200007713</identifier><language>eng</language><ispartof>Journal of applied probability, 2011-03, Vol.48 (1), p.189-199</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1993-ffbc393d011a124043ea26732f48e7e6206dfe3c5f8030a096603f7d667a79b83</citedby><cites>FETCH-LOGICAL-c1993-ffbc393d011a124043ea26732f48e7e6206dfe3c5f8030a096603f7d667a79b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Smythe, R. T.</creatorcontrib><title>Generalized Coupon Collection: The Superlinear Case</title><title>Journal of applied probability</title><description>We consider a generalized form of the coupon collection problem in which a random number,
S
, of balls is drawn at each stage from an urn initially containing
n
white balls (coupons). Each white ball drawn is colored red and returned to the urn; red balls drawn are simply returned to the urn. The question considered is then: how many white balls (uncollected coupons) remain in the urn after the
k
n
draws? Our analysis is asymptotic as
n
→ ∞. We concentrate on the case when
k
n
draws are made, where
k
n
/
n
→ ∞ (the superlinear case), although we sketch known results for other ranges of
k
n
. A Gaussian limit is obtained via a martingale representation for the lower superlinear range, and a Poisson limit is derived for the upper boundary of this range via the Chen-Stein approximation.</description><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNplj8FKxEAQRAdxwbjrB3jLD0S7p5PpjDcJugoLHnY9h9mkByMxCTPuQb_eBL1Zh6rDg4Kn1DXCDQLy7R5Ao50L5jAjnakEcy4yA6zPVbLgbOEX6jLGdwDMC8uJoq0MElzffUubVuNpGod5-l6az24c7tLDm6T70ySh7wZxIa1clI1aeddHufrbtXp9fDhUT9nuZftc3e-yBq2lzPtjQ5ZaQHSoc8hJnDZM2uelsBgNpvVCTeFLIHBgjQHy3BrDju2xpLXC398mjDEG8fUUug8XvmqEerGu_1nTDw_0SBU</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Smythe, R. T.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201103</creationdate><title>Generalized Coupon Collection: The Superlinear Case</title><author>Smythe, R. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1993-ffbc393d011a124043ea26732f48e7e6206dfe3c5f8030a096603f7d667a79b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smythe, R. T.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smythe, R. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Coupon Collection: The Superlinear Case</atitle><jtitle>Journal of applied probability</jtitle><date>2011-03</date><risdate>2011</risdate><volume>48</volume><issue>1</issue><spage>189</spage><epage>199</epage><pages>189-199</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>We consider a generalized form of the coupon collection problem in which a random number,
S
, of balls is drawn at each stage from an urn initially containing
n
white balls (coupons). Each white ball drawn is colored red and returned to the urn; red balls drawn are simply returned to the urn. The question considered is then: how many white balls (uncollected coupons) remain in the urn after the
k
n
draws? Our analysis is asymptotic as
n
→ ∞. We concentrate on the case when
k
n
draws are made, where
k
n
/
n
→ ∞ (the superlinear case), although we sketch known results for other ranges of
k
n
. A Gaussian limit is obtained via a martingale representation for the lower superlinear range, and a Poisson limit is derived for the upper boundary of this range via the Chen-Stein approximation.</abstract><doi>10.1017/S0021900200007713</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 2011-03, Vol.48 (1), p.189-199 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0021900200007713 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete |
title | Generalized Coupon Collection: The Superlinear Case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Coupon%20Collection:%20The%20Superlinear%20Case&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Smythe,%20R.%20T.&rft.date=2011-03&rft.volume=48&rft.issue=1&rft.spage=189&rft.epage=199&rft.pages=189-199&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/S0021900200007713&rft_dat=%3Ccrossref%3E10_1017_S0021900200007713%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |